Page 202 - DMTH403_ABSTRACT_ALGEBRA
P. 202

Unit 19: The Field of Quotient Euclidean Domains




          3.   Find all the units in                                                            Notes
               (a) Z     (b) Z      (c) Z/5Z     (d) Z + IZ
                         6
          4.   Let R be an integral domain. Show that
               (a)  u is a unit in R iff u | 1.
               (b)  for a, b  R, a | b and b | a iff a and b are associates in R.
          5.   Which of the following polynomials is irreducible? Give reasons for your choice.

               (a)  x  – 2x + 1  R[x]      (b)  x  + x + 1  C[x]
                                                  2
                     2
               (c)  x – i  C[x]            (d)  x  – 3x  + 2x + 5  R[x].
                                                  3
                                                      2
          Answers: Self  Assessment
          1. (a) 2. (c)  3. (a) 4. (c)  5. (b)

          19.6 Further Readings





           Books      Dan Saracino: Abstract Algebra; A First Course.
                      Mitchell and Mitchell: An Introduction to Abstract Algebra.
                      John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).




          Online links  www.jmilne.org/math/CourseNotes/
                      www.math.niu.edu
                      www.maths.tcd.ie/
                      archives.math.utk.edu


































                                           LOVELY PROFESSIONAL UNIVERSITY                                  195
   197   198   199   200   201   202   203   204   205   206   207