Page 289 - DMTH403_ABSTRACT_ALGEBRA
P. 289

Abstract Algebra




                    Notes          Alternatively,  (x ,..., x ) can  be defined  as the  coefficient of x   in the generating function
                                                                                       n-j
                                                j  1  n
                                     (x x ).                                                                               ...(13)
                                        
                                          i
                                   1 i n
                                     
                                   
                                   For example, on four variables x , ..., x , the elementary symmetric polynomials are
                                                             1
                                                                  4
                                                        (x , x , x , x ) = x  + x  + x  + x 4            ...(14)
                                                             2
                                                        1
                                                               3
                                                          1
                                                                 4
                                                                     1
                                                                         2
                                                                            3
                                                        (x , x , x , x ) = x  x  + x  x  + x  x  + x  x  + x  x  + x  x 4  ...(15)
                                                                                      2
                                                          1
                                                        2
                                                                 4
                                                                           1
                                                                       2
                                                                     1
                                                                             3
                                                                                  4
                                                             2
                                                               3
                                                                                1
                                                                                        3
                                                                                             4
                                                                                           2
                                                                                                 3
                                                        (x , x , x , x ) = x  x  x  + x  x  x  + x  x  x  + x  x  x 4  ...(16)
                                                               3
                                                                                    1
                                                                               2
                                                                                 4
                                                                                        4
                                                                         3
                                                                       2
                                                                     1
                                                                 4
                                                                             1
                                                                                            2
                                                                                              3
                                                             2
                                                          1
                                                                                      3
                                                        3
                                                        (x , x , x , x ) = x  x  x  x                    ...(17)
                                                        4  1  2  3  4  1  2  3  4
                                   The power sum S  (x ,..., x ) is defined by
                                                 p  1  n
                                                                      n
                                                                        p
                                                          S (x , ..., x ) =   x .                        ...(18)
                                                                 n
                                                                        k
                                                           p
                                                             1
                                                                     k 1
                                                                      
                                   The relationship between * and  ,...,  is given by the so-called Newton-Girard formulas. The
                                                                  p
                                                              1
                                   related function s ( , ...,  ) with arguments given by the elementary symmetric polynomials
                                                   1
                                                 p
                                                         n
                                   (not x ) is defined by
                                       n
                                                       s ( ,..., ) = (–1)  S  (x ,...,x )               ...(19)
                                                                     p–1
                                                                        p
                                                        p
                                                                              n
                                                           1
                                                                          1
                                                               n
                                                                        n
                                                                          p
                                                                      
                                                                = ( 1)  p 1  x .                        ...(20)
                                                                          k
                                                                       k 1
                                                                        
                                   It turns out that s  ( , ..., ) is given by the coefficients of the generating function
                                                         n
                                                    1
                                                 p
                                                                     s
                                         ln (1 +  t +   t  +   t  + ...) =    k  t k                  ...(21)
                                                      2
                                                           3
                                                1
                                                    2
                                                                  k 1 k
                                                          3
                                                                   
                                                                       1             1
                                                                           2
                                                                                        3
                                                                                                      3
                                                                                  2
                                                                    t
                                                                =    2 (   2 2 )t  3 (   3    3 3 )t  ...
                                                                    1
                                                                           1
                                                                                               2
                                                                                             1
                                                                                        1
                                   so the first few values are
                                                               s  =  1                                   ...(22)
                                                               1
                                                                     2
                                                               s  =    2 2                            ...(23)
                                                                     1
                                                               2
                                                               s  =  3 1  – 3    3 3                 ...(24)
                                                                        1
                                                                          2
                                                               3
                                                                     4
                                                                          2
                                                                                 2
                                                               s  =    4   2   4    4 4 .     ...(25)
                                                                     1
                                                                                       3
                                                                                     1
                                                                                 2
                                                                          1
                                                                            2
                                                               4
                                   In general, s  can be computed from the determinant
                                            p
                                                                         1   1    0     0     0
                                                                        2 2   1  1     0     0
                                                                                   
                                                               s  = ( 1) p 1  3 3 4   2 3   1 2   1 1    0 0  ...(26)
                                                                      
                                                                   
                                                               p
                                                                             
                                                                        4
                                                                                            
                                                                                           1
                                                                        p p   p 1   p 2   p 3    1
                                                                               
                                                                                    
                                                                                         
          282                               LOVELY PROFESSIONAL UNIVERSITY
   284   285   286   287   288   289   290   291   292   293   294