Page 76 - DMTH403_ABSTRACT_ALGEBRA
P. 76
Unit 5: Normal Subgroups
6. Prove that if H G and K G, then HK G. Notes
7. Prove that if H G , K G, then HK G.
Answers: Self Assessment
1. (d) 2. (a) 3. (c) 4. (d) 5. (b)
5.6 Further Readings
Books Dan Saracino: Abstract Algebra; A First Course.
Mitchell and Mitchell: An Introduction to Abstract Algebra.
John B. Fraleigh: An Introduction to Abstract Algebra (Relevant Portion).
Online links www.jmilne.org/math/CourseNotes/
www.math.niu.edu
www.maths.tcd.ie/
archives.math.utk.edu
LOVELY PROFESSIONAL UNIVERSITY 69