Page 187 - DMTH404_STATISTICS
P. 187

Unit 14: Theoretical Probability Distributions



                                                                                                  Notes
                              n
                                        
                          2
                                                            
                                 . C p q
                       E r
                 Now,  ( ) =  å r  2 n  r  r n r  = é ë  ( r r   ) 1 + ù û  n  r  r n r
                                                    r   C p q
                             r= 1
                              n                 n            n  ( r r   ) 1 !n
                                      n
                                         r n r
                                                   n
                                                                          r n r
                                                       r n r
                                 = å  ( r r   ) 1 C p q    + å  . r C p q    = å   . p q    +  np
                                        r
                                                     r
                             r= 2              r= 1          r= 2  ( ! r n r  )!
                              n       ! n                n  ( n n   1 ) ( . n   ) 2 !
                                              r n r
                                                                           r n r
                                        =  å   . p q    +  np = å       . p q    +  np
                             r= 2  (r   2 ) ( ! n r  )!  r=  2  (r   2 ) ( ! n r  )!
                                      n    (n   ) 2 !
                                                           
                                 n=  (n   ) 1 p 2 å   . p r 2 q n r  +  np
                                      r= 2  (r   2 ) ( ! n r  )!
                                                           2
                                 n=  (n  1 p 2  ) n 2  +  np =  ( n n   ) 1 p +  np
                                   ) (q p+
                 Substituting this value in equation (1), we get
                         2           2       2 2
                       s =    ( n n   ) 1 p +  np n p =  np  ( 1 p  )  = npq
                                          
                 Or the standard deviation  =  npq

                         2                                 2
                                =
                                       ´
               Note    s =  npq mean q , which shows that  s <  mean , since 0 < q <1.
            (c)  The values of m , m , b  and b
                              3   4  1    2
                 Proceeding as above, we can obtain

                                     3
                        m =  E (r np  ) =  npq (q p  )
                         3
                                     4    2 2 2
                        m =  E (r np  ) =  3n p q +  npq  (1 6pq  )
                         4
                                  2 2 2
                            m 3 2  n p q  (q p  ) 2  (q p  ) 2
                 Also   b =    =               =
                         1    3       3 3 3
                            m        n p q         npq
                             2
                 The above result shows that the distribution is symmetrical when
                        1
                 p = q =   , negatively skewed if q < p, and positively skewed if q > p
                        2
                                    2 2 2
                            m    3n p q +  npq (1 6pq  )   (1 6pq  )
                        b =   4  =                     =  3 +
                         2    2           2 2 2
                            m 2          n p q                npq
                 The above result shows that the distribution is leptokurtic if 6pq < 1, platykurtic if 6pq >
                 1 and mesokurtic if 6pq = 1.
            (d)  Mode





                                             LOVELY PROFESSIONAL UNIVERSITY                                  179
   182   183   184   185   186   187   188   189   190   191   192