Page 183 - DMTH404_STATISTICS
P. 183

Unit 13: Moment Generating Function - Continue



            2.   Continuing  the  example  above,  the  joint  moment  generating  function  of  a  Notes
                 2 × 1 standard normal random vector X is

                                               1  T     1  1  2 
                                                          2
                                         
                                    M (t) exp  t t   exp  t   t
                                     X                 1    2 
                                               3       3  2  
            3.   Let X be a 2 × 1 discrete random vector and denote its components by X  and X . Let the
                                                                           1     2
                 support of X be
                                                T
                                       RX = {[1   1] , [2   2] , [0    0] }
                                                            T
                                                      T
                 and its joint probability mass function be
                                               1          T
                                                     
                                               3  if x [1  1]
                                              
                                               1  if x [2  2] T
                                                     
                                               3
                                        p (x) =  
                                         X     1
                                                 if x [0  0] T
                                                     
                                               3
                                               0 otherwise
                                              
                                              
                 Derive the joint moment generating function of X, if it exists.
            4.   Let
                                             X = [X     X ] T
                                                  1  2
                 be a 2 × 1 random vector with joint moment generating function
                                                 1  1
                                     M , (t ,t )     exp(t   2t )
                                       X
                                              2
                                                         1
                                            1
                                        1 X
                                                             2
                                          2
                                                 3  3
                 Derive the expected value of X .
                                         1
            Answers: Self  Assessment
            1. (c)  2.  (d)  3.  (a)  4.  (b)
            13.7 Further Readings



             Books     Introductory Probability and Statistical Applications by P.L. Meyer
                       Introduction to Mathematical Statistics by Hogg and Craig

                       Fundamentals of Mathematical Statistics by S.C. Gupta and V.K. Kapoor

















                                             LOVELY PROFESSIONAL UNIVERSITY                                  175
   178   179   180   181   182   183   184   185   186   187   188