Page 181 - DMTH404_STATISTICS
P. 181

Unit 13: Moment Generating Function - Continue



                                                                                                  Notes
                    Distribution      Moment-generating function MX(t)   Characteristic function φ(t)
             Bernoulli P(X = 1) = p            1 – p + pe   t            1 – p + pe
                                                                               it
                                          pe t                             pe it
                                                       
                                                           
             Geometric (1 – p) p                for t   1 ln(1 p)
                         k–1
                                                                         
                                       1 (1 p)e  t                      1 (1 p)e  it
                                        
                                           
                                                                            
             Binomial B(n, p)                 (1 – p + pe )             (1 – p + pe )
                                                      t n
                                                                               it n
                                                   t                        it
             Poisson Pois(λ)                    e   (e  1)              e   (e   1)
                                                 tb
                                                e   e ta                e itb   e ita
             Uniform U(a, b)
                                                t(b a)                   it(b a)
                                                                            
                                                  
                                                  1  2 2                    1  2 2
                                                                           
             Normal N(μ, σ2)                     t   t                 it –   t
                                                  2
                                                e                        e
                                                                            2
             Chi-square χ2k                    (1 – 2t) –k/2             (1 – 2it) –k/2
                                                                              –k
             Gamma Γ(k, θ)                      (1 – t)                 (1 – it)
                                                    –k
             Exponential Exp(λ)                (1 – t )                 (1 – it )
                                                    1 –1
                                                                              1 –1
                                                                         T
                                               T
                                               t
                                                     T
                                                                        it
                                                                               T
                                                       t
             Multivariate normal N(μ, Σ)      e    1  t             e    1  t 
                                                                                t
                                                   2                         2
             Degenerate δa                        e                        e
                                                  ta
                                                                            ita
                                                 e  t                     e  it
             Laplace L(μ, b)
                                                                             2 2
                                                   2 2
                                                 
                                                1 b t                    1 b t
                                                                           
             Cauchy Cauchy(μ, θ)              not defined                 e it   –   |t|
                                                  
                                                (1 p) r                  (1 p) r
                                                                           
             Negative Binomial NB(r, p)
                                                    t
                                                                              it
                                                                          
                                               (1 pe )r                  (1 pe )r
                                                 

            13.3 Summary
                Definition Let X be a K × 1 random vector. If the expected value
                                  E[exp(t X) = E[exp(t X  + t X  + ... t X )]
                                        T
                                                  1  1  2  2  K  K
                 exists and is finite for all k × 1 real vectors t belonging to a closed rectangle H:
                                 H = [–h , h ] × [–h , h ] × ... × [–h , h ]   K
                                       1  1    2  2        K  K
                 with hi > 0 for all i = ,...,K, then we say that X possesses a joint moment generating function
                 (or joint mgf) and the function M  : H   defined by
                                           X
                                           M (t) = E[exp(t X)]
                                                      T
                                            X
                 is called the joint moment generating function of X.
                Let a and b be constants, and let MX(t) be the mgf of a random variable X. Then the mgf of
                 the random variable Y = a + bX can be given as follows
                                                    at
                                      tY
                              M (t) = E[e ] = E[e t(a + bX) ] = e E[e(bt)X] = eatMX(bt)
                               Y
                Let X and Y be independent random variables having the respective mgf’s M (t) and M (t).
                                                                             X       Y
                 Recall that E[g (X)g (Y)] = E[g (X)]E[g (Y)] for functions g  and g . We can obtain the mgf
                            1   2        1     2               1    2
                 Mz(t) of the sum Z = X + Y of random variables as follows.
                                             LOVELY PROFESSIONAL UNIVERSITY                                  173
   176   177   178   179   180   181   182   183   184   185   186