Page 178 - DMTH404_STATISTICS
P. 178

Statistics



                      Notes



                                       Notes    The moment generating function M (t ) of a standard normal random variable
                                                                            X i  i
                                       is defined for any t   . As a consequence, the joint moment generating function of X is
                                                      i
                                                        K
                                       defined for any t   .


                                           Example 2: Let
                                                                     X = [X     X ] T
                                                                          1   2
                                    be a 2 × 1 random vector with joint moment generating function

                                                                          1  2
                                                             M , (t ,t )     exp(t  2t )
                                                                                  1
                                                                                      2
                                                                    1
                                                                      2
                                                               X
                                                                1 X
                                                                          3  3
                                                                  2
                                    Derive the expected value of X .
                                                             1
                                    Solution
                                    The moment generating function of X  is:
                                                                   1
                                       M (t ) = E[exp(t X )]
                                        X 1  1      1  1
                                            = E[exp(t X  + 0.X )]
                                                    1  1   2
                                            = M ,X (t ,0)
                                                X 1  2  1
                                               1  2
                                            =     exp(t   2.0)
                                                       1
                                               3  3
                                               1  2
                                            =     exp(t )
                                                       1
                                               3  3
                                    The expected value of X  is obtained by taking the first derivative of its moment generating
                                                        1
                                    function:
                                                                  dM (t )   2
                                                                     X  1  1    exp(t )
                                                                     dt     3    1
                                                                      1
                                    and evaluating it at t  = 0:
                                                     1
                                                                   dM (t )     2       2
                                                             E[X ]   X  1  1    exp(0) 
                                                                1
                                                                     dt        3       3
                                                                       1
                                                                           1 t   0
                                           Example 3: Let
                                                                     X = [X     X ] T
                                                                          1   2
                                    be a 2 × 1 random vector with joint moment generating function
                                                                    1
                                                                                  
                                                       M , (t ,t )   [1  exp(t  2t ) exp(2t  t )]
                                                         X 1 X  2  1  2  3  1   2       1  2
                                    Derive the covariance between X  and X .
                                                               1     2




            170                              LOVELY PROFESSIONAL UNIVERSITY
   173   174   175   176   177   178   179   180   181   182   183