Page 179 - DMTH404_STATISTICS
P. 179

Unit 13: Moment Generating Function - Continue



            Solution                                                                              Notes

            We can use the following covariance formula:
                                     Cov[X , X ] = E[X X ] – E[X ]E[X ]
                                          1  2     1  2   1   2
            The moment generating function of X  is:
                                          1
             M (t )  = E[exp(t X )]
               X  1        1  1
                1
                    = E[exp(t X  + 0.X )]
                           1  1   2
                    = M , (t ,0)
                       X 1  X 2  1
                    = E[exp(t X  + 0.X )]
                           1  1   2
                    = M , (t , 0)
                       X X 2  1
                        1
                      1
                                    
                    =  [1   exp(t   2.0) exp(2t   0)]
                               1
                                           1
                      3
                      1
                    =  [1   exp(t ) exp(2t )]
                                
                               1
                                       1
                      3
            The expected value of X  is obtained by taking the first derivative of its moment generating
                                1
            function
                                     dM (t )  1
                                        X  1
                                                      
                                         1     [exp(t ) 2exp(2t )]
                                       dt     3     1        1
                                         1
            and evaluating it at t  = 0
                             1
                                      dM (t )     1
                                E[X ] =   X  1  1    [exp(0) 2exp(0)] 1
                                                         
                                                                  
                                   1
                                        dt        3
                                          1
                                              1 t  0
            The moment generating function of X  is
                                          2
                 M (t ) = E[exp(t X )]
                   X 2  2     2  2
                       = E[exp(0.X  + t X )]
                                1   2  2
                       = M , (0,t )
                          X  X  2
                           1  2
                         1
                                       
                                              
                                  
                            
                       =  [1 exp(0 2t ) exp(2.0 t )]
                                                2
                                     2
                         3
                         1
                            
                       =  [1 exp(2t ) exp(t )]
                                    
                                          2
                                   2
                         3
            To compute the expected value of X  we take the first  derivative of its moment  generating
                                          2
            function
                                     dM (t )    1 [2exp(t ) exp(t )]
                                        X2
                                           2
                                                       
                                        dt    3       2      2
                                         2
            and evaluating it at r  = 0
                             2
                                      dM (t )     1
                                E[X ]   X2  2     [2exp(0) exp(0)] 1
                                                                  
                                                          
                                   2
                                        dt        3
                                          2
                                              2 t  0
                                             LOVELY PROFESSIONAL UNIVERSITY                                  171
   174   175   176   177   178   179   180   181   182   183   184