Page 225 - DMTH503_TOPOLOGY
P. 225

Unit 27: Complete Metric Spaces




          Show that                                                                             Notes
          (i)  <b > is a Cauchy sequence.
                 n
          (ii)  <a > converges to a point pX iff <b > converges in p.
                 n                           n
          Solution: Let <a > be a Cauchy sequence in a metric space (X,) so that
                      n
          given        , K > 0  n N s.t.
                                  o
                      n, mn  (a , a ) <K                                   …(1)
                            o     n  m
          Also let <b > be a sequence in X s.t.
                   n
                                1
                       (a , b ) <  nN                                       …(2)
                          n  n
                                n
          Step (i): To prove that <b > is a Cauchy sequence.
                              n
          Let, K > 0 any given real numbers.
                                    1
          Then          m N s.t.   <k.                                      …(3)
                           o
                                   m
                                     o
          Set               K  = max. (n , m ).
                             o        o  o
          Then K n , m , so that
                o   o  o
                            1    1  1
                                 ,                                               …(4)
                           K  o  n  o  m  o
                    1       1    1     1    1         1
                      < K,            < K   <K.                     …(5)
                   m       K    m      K    m        K
                     o      o     o     o    o         o
                                1    1
          If n  K , then    (a , b ) <        < K,
                o         n  n
                                n   K
                                     o
          i.e.,        (a , b ) < K  n, m  K                                   …(6)
                          n  n             o
          For n, m  K , we have
                    o
                       (b , b )  (b , a ) + p(a , a ) + p(a , b )
                         n  m     n  n    n  m     m  m
                              < K + K + K = 3 K.

                             1
          Choosing initially K =   , we get
                             3
                       (b , b ) <  n  K .
                         n  m          o
          This proves that <b > is a Cauchy sequence.
                          n
          Step (ii): Let a  ® p  X.
                     n
          To prove that b  ® p.
                      n
                        a  ® p  given , K > 0,  m   N s.t.
                         n                     o
                        n  m   (a , p) < K.
                            o     n
          We have seen that <a > and <b > are Cauchy Sequences and therefore given , K > 0,  n   N s.t.
                           n       n                                            o
                     m, n  n   (a , a ) < K, (b , b ) < K.
                            o     n  m        n  m



                                           LOVELY PROFESSIONAL UNIVERSITY                                   219
   220   221   222   223   224   225   226   227   228   229   230