Page 264 - DMTH503_TOPOLOGY
P. 264

Topology




                    Notes          3.  If dim (X) < d then show that the (d-dimensional) Lebesgue measure of X is zero.
                                            H
                                   4.  Let  ,   and let
                                            1  2
                                                   +   = {  +   :   ,   }
                                                  1   2   1  2  1    1  2  2
                                       then prove that dim (  +  )dim ( ) + dim ( ).
                                                        H  1  2      H  1     H  2
                                   5.  If we can find a probability measure   satisfying the above hypothesis then prove that
                                       dim (X)³d.
                                           H
                                   32.5 Further Readings




                                   Books       Rogers, M. (1998), Hausdorff Measures, Cambridge University Press.

                                               Lapidus, M. (1999), Math 209A – Real Analysis Mid-term, UCR Reprographics.



                                   Online links  en.wikipedia.org/wiki/E8-mathematics
                                               en.wikipedia.org/wiki/M-theory



















































          258                               LOVELY PROFESSIONAL UNIVERSITY
   259   260   261   262   263   264   265