Page 29 - DMTH503_TOPOLOGY
P. 29

Unit 1: Topological Spaces




          By construction of T,  i(A)  T.                                                     Notes
          Thus, i(A) is T-open set s.t. i(A)  A.
          Let B be an open set s.t. B  A.
                   B  T, B  A  i(B) = (B), i(B)  i(A)

                              B  i(A)
          Thus i(A) contains any open set B s.t. B  A. It follows that i(A) is the largest open subset of A.
          Consequently i(A) = A°.

          1.7.4 Properties of Exterior

          Theorem 19: Let (X, T) be a topological space and A, B  X. Then

          (i)  ext (X) = 
          (ii)  ext ) = X
          (iii)  ext (A)  A

          (iv)  ext (A) = ext [(ext (A))]
          (v)  A  B  ext (B)  ext (A)
          (vi)  A°  ext [ext (A)]
          (vii) ext (A  B) = ext (A)  ext (B).
          Proof:

          (i)  ext (X) = (X – X)° = as we know that ext (A) = (X – A)°
          (ii)  ext ) = (X – )° = X° = X
          (iii)  ext (A) = (X – A)° X – A = A  or  ext (A)  A  for B°  B

          (iv)  [ext (A)] = [(X – A)°] =X – (X – A)°
               or   ext [{ext (A)}] = ext [X – (X – A)°]
                                = [X – {X – (X – A)°}]°
                                = [(X – A)°]° = (X – A)°°
                                = (X – A)°                                [As B°° = B°  B]

                                = ext (A)
                         ext (A) = ext [(ext (A))]
          (v)  A  B  X – B  X – A

                     (X – B)°  (X – A)°
                     ext (B)  ext (A)
          (vi)  ext (A) = (X – A)°  X – A
                     ext (A)  X – A
               As A  B  ext (B)  ext (A), we get

               ext (X – A)  ext [ext (A)]                                        …(1)





                                           LOVELY PROFESSIONAL UNIVERSITY                                   23
   24   25   26   27   28   29   30   31   32   33   34