Page 30 - DMTH503_TOPOLOGY
P. 30

Topology




                    Notes              But ext (X – A) = ext (A) = (X – A)° = [X – (X – A)]°
                                                   = A°
                                       Now (1) becomes A°  ext [ext (A)]
                                   (vii) ext (A  B)  = [X – (A  B)]° = [(X – A)  (X – B)]°

                                                   = (A  B)°
                                                   = (A)°  (B)°
                                                   = ext (A)  ext (B).
                                   Theorem 20: Exterior Operator:  The exterior, by definition  of interior  function  ‘e’ on  X is a
                                   function
                                               e :  P(X)  P(X) s.t.
                                   (i)  e (X) = 

                                   (ii)  e ) = X
                                   (iii)  e (A)  A
                                   (iv)  e (A) = e [(e (A))]
                                   (v)  e (A  B) = e (A)  e (B)

                                   For any sets A, B  X. Then there exists a unique topology T on X s.t. e (A) = T-exterior of A.
                                   Proof: Write T = {G  X : e (G) = G}
                                   We are to show that T is a topology on X.
                                   (i)  e () = e (X) =                                                  by (i)

                                       e (X) = e () = X                                                 by (ii)
                                       Now e () = ,  e (X) = X  , X  T
                                   (ii)  Let G , G   T
                                            1  2
                                       Then      e (G) = G ,  e (G) = G
                                                     1    1     2   2
                                       But    (G   G ) = G  G
                                                1   2     1   2
                                            e [(G   G )] = e (G  G)
                                                1   2       1   2
                                                       = e (G)  e (G)                                  by (v)
                                                            1      2
                                                       = G   G
                                                          1   2
                                                       G   G   T
                                                          1   2
                                   (iii)  Firstly, we shall show that
                                                 A  B  e (B)  e (A)                                     …(1)
                                                 A  B  A  B = B  e (B) = e (A  B)

                                                                       = e (A)  e (B)  e (A)
                                        e (B)  e (A)
                                   Let  G   T    
                                         
                                   Then          e (G) = G                                                …(2)
                                                        




          24                                LOVELY PROFESSIONAL UNIVERSITY
   25   26   27   28   29   30   31   32   33   34   35