Page 120 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 120

Unit 7: General Properties of Solutions of Linear Differential Equations of Order n




          Assuming that a    0, we can write the above equation in the form                     Notes
                       n
                          n
                                          2
                         d y          dy d y   d n  1 y
                             =  f x , ,  ,  ,...,                                  ...(1)
                                    y
                         dx n         dx dx  2  dx n  1
          We are interested in solving the equation (1) under the initial conditions
                                   dy          d n  1 y  n  1
                         ( y x  0 ) = y 0  ,  (x 0 )  y 0 ,....,  n  1  (x 0 )  y 0  ...(2)
                                   dx          dx
          Let us define

                          dy
                             = y
                          dx     1
                         dy
                           1  = y
                         dx      2
                                      ...........................
                                      ...........................                   (3)
                                      ...........................

                       dy n  2
                         dx  = y n 1
                        dy n  1     f ( , ,y  ,....,y  )
                                      x
                                       y
                         dx  = y n        1    n  1
          with the initial conditions

                         ( y x  ) = y y  (x  )  y  , y  (x  )  y  ....y  (x  )  y  (n  1)  ...(4)
                                  ,
                          0      0  1  0  0  2  0  0   n  1  0  0
          We may consider more generally, the system of ordinary differential equations
                         dz 1   f  ( , , z  ,.... )
                                  x
                                    z
                                           z
                         dx  =   1   1  2  n
                         dz 2  =  f  ( ,z z  ,... )
                                          z
                                      ,
                                  x
                         dx      2   1  2  n
                                        ..................................................  (5)
                                        ..................................................
                         dz
                           n  =  f  ( , z z  ,....,z  )
                                  x
                                      ,
                         dx      n   1  2    n
          with the initial conditions
                       z m (x 0 ) = y 0 (m  1)  , m  1, 2,...,n

          where  y (0)  y  .  For this problem we shall prove the following theorem 1.
                 0    0
          Theorem 1: Let
                        ,
                                          z
                  f 1 ( , z z 2 ,.... ), f 2 ( , z z 2 ,.... ),....  f n ( , z z 2 ,... )  ...(6)
                                                          ,
                                                               z
                    x
                                                       x
                                     ,
                                  x
                            z
                             n
                                                         1
                                                               n
                       1
                                     1
                                           n
                                                                  )
                                                           ,
          be real valued and continuous on a Domain of the real  ( ,x z z 2 ,...,z  space given by
                                                                 n
                                                          1
                x x 0  , a z  m  y  (m  1)  , b  m  = 1, 2, ...n                  ....(7)
                            0
                                           LOVELY PROFESSIONAL UNIVERSITY                                   113
   115   116   117   118   119   120   121   122   123   124   125