Page 124 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 124

Unit 7: General Properties of Solutions of Linear Differential Equations of Order n




               Now we shall prove that (ii) does not vanish at any point in D. Suppose that there exists a  Notes
               point x  in D for which
                     0
                               y
                             W ( (x 0 ),y 2 (x 0 ),...,y  n (x 0 )) = 0           ...(iv)
                                1
               Then the system of linear equations with the coefficients  y  ( ) j  (x  )
                                                               i  0
                       C y  (x 0 ) C y  (x 0 ) ... C y  (x 0 ) = 0
                         1 1
                                            n n
                                 2 2
                       C y  (x  ) C y  (x  ) ... C y  (x  ) = 0
                         1 1  0  2 2  0     n n  0
                                   ................................................................................
                   (n  1)     (n  1)       (n  1)
                                                 )
                 C y  (x 0 ) C y  (x  0 ) ... C y  (x 0 = 0
                  1 1
                            2 2
                                          n n
               has solutions C , C , ...., C , not all zero. The linear combination
                           1  2     n
                                                       n
                                                            x
                                               y(x) =   C y  ( )
                                                         i  i
                                                      i  1
               of y (x) with these coefficients C  obviously satisfies the equation (5) and the initial conditions
                  i                    i
               (6) at the point x in D. Therefore, we have
                            0
                                                      n
                                               y(x) =   C y i ( ) 0
                                                            x
                                                         l
                                                      i  1
                                        x
               This contradicts the fact that  y 1 ( ), y 2 ( ),....,y n ( ) are linearly  independent. Therefore, the
                                             x
                                                     x
                                                                  x
                                                           x
                                                      x
               Wronskian of linearly independent solutions  y 1 ( ), y 2 ( ),....,y n  ( ) does not vanish at any
               point in D.
                                                    x
                                                               x
                                                         x
               Next we shall consider the Wronskian  W y 1 ( ), y 2 ( ),...,y n  ( )  of n solutions y (x), y (x),
                                                                               1
                                                                                   2
                                        x
               ..., y (x) where  y 1 ( ),y 2 ( ),...y n ( ) are not necessarily linearly independent. Differentiating
                             x
                                  x
                  n
                                x
               W y 1 ( ), y 2 ( ),...,y n ( )  with respect to x, we obtain
                          x
                    x
                                                                             x
                                                          x
                                                       y 1 ( ),  y 2 ( ),  ...,  y n ( )
                                                                  x
                                                                             x
                                                       y  ( ),  y  ( ),  ...,  y  ( )
                                                          x
                                                                  x
                                                        1       2          n
                              dW y 1 ( ),y 2 ( ),..., y n  ( )  .........................................................
                                               x
                                         x
                                    x
                                                   =                              ...(v)
                                       dx              (n  1)  (n  2)     (n  2)
                                                                              x
                                                                   x
                                                           x
                                                      y   ( ), y  ( ), ..., y  ( )
                                                       1       2          n
                                                        n
                                                                n
                                                                             x
                                                                  x
                                                       y ( ) ( ),  y ( ) ( ),  ...,  y (2) ( )
                                                          x
                                                                           n
                                                                2
                                                        1
               Since y (x) satisfies the equation (5)
                     l
                                                       n  1
                                                                  x
                                                                        x
                                                                           x
                                              n
                                                                         y
                                                            x
                                            y ( ) ( ) =  p k ( )y (n k  ) ( ) p n ( ) ( )
                                                x
                                                              l
                                                                          i
                                             l
                                                       k  1
               Substituting this in the above determinant, we obtain
                                                      dW y 1 ( ),y 2 ( ),..., y n  ( )
                                                                 x
                                                                       x
                                                            x
                                                   =                              ...(vi)
                                                               dx
                                                         x
                                                   =   p i ( )W y 1 ( ),y  2 ( ),...,y  n ( )
                                                                x
                                                                           x
                                                                    x
                                           LOVELY PROFESSIONAL UNIVERSITY                                   117
   119   120   121   122   123   124   125   126   127   128   129