Page 131 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 131

Differential and Integral Equation




                    Notes                                           2x
                                   or                         y = e   c 1  cosh  3x c 2  sin h  3x  .

                                                         3
                                                               2
                                                        d y   d y   dy
                                          Example 3: Solve:   3  2  2  4  8y  0.
                                                        dx    dx    dx
                                   Solution: The given equation is
                                                 3
                                               (D    2D 2    4D + 8) y = 0
                                   Auxiliary equation is
                                                        2
                                                   2
                                                  m    2m    4m + 8 = 0
                                                           2
                                   or               (m   2) (m    4) = 0; m = 2,   2.
                                     General solution is

                                                              y = (c 1  c 2  ) x e 2x  c e  2x .
                                                                               3
                                                         2
                                                        d y
                                          Example 4: Solve:   4y  0.
                                                        dx 2
                                   Solution: The given equation is

                                                          2
                                                        (D  + 4) y = 0.
                                   Auxiliary equation is

                                                            2
                                                           m  + 4 = 0 or m =   2i.
                                   The general solution is

                                                              y = c  cos 2x + c  sin 2x.
                                                                    1       2
                                   Self Assessment

                                   3.  Solve

                                         3
                                               2
                                        d y   d y   dy
                                            9     23    15y  0
                                        dx 3  dx 2  dx
                                   4.  Solve

                                         2
                                        d y  8  dy  25y  0
                                        dx 2  dx

                                   5.  Solve
                                               2
                                         3
                                        d y   d y  dy
                                            4     5    2y  0
                                        dx 3  dx  2  dx
                                   6.  Solve

                                         4
                                                    2
                                               3
                                        d y  2  d y  5  d y  8  dy  4y  0
                                        dx 4  dx 3  dx 2  dx


          124                               LOVELY PROFESSIONAL UNIVERSITY
   126   127   128   129   130   131   132   133   134   135   136