Page 134 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 134

Unit 7: General Properties of Solutions of Linear Differential Equations of Order n




                                                                                                Notes
                                           A e  1 x  e  1 x Qdx A e  2 x  e  2 x Qdx
                                                           2
                                            1
                                              A e  n x  e  n x  Qdx .
                                                 n

                      1    x
          To evaluate    e  , where
                      D
                     f ( )
                                    f(D) = P D n  P D n  1    P n  ,
                                                 1
                                            0
          and  ( )f  0.

          We know that            D (e  ax ) = ae  ax

                                            2 ax
                                 D 2 (e ax ) = a e
                                                           ...............................
                                                           ...............................

                                            n
                                 D n (e  ax ) = a e  ax .
          Therefore,

                                 f  ( )e ax  = (P D n  P D n  1    P n ) e ax
                                  D
                                            0
                                                  1
                                              n ax
                                                         e
                                        = P D e    P D n  1 ax    P e ax
                                            0
                                                                 n
                                                    1
                                             n
                                                       e
                                        = P a e ax  P a n  1 ax    P e  ax
                                                   1
                                            0
                                                               n
                                        = (P a  n  P a n  1    P n )e  ax
                                            0
                                                 1
                         a
          Now,  ( )f D e ax  f ( )e  ax .
                                      1
          Operating upon both sides with    we have
                                     f  ( )
                                       D
                              1      ax     1      ax
                                 f  ( )e  =    f  ( )e  ,
                                                 a
                                  D
                              D
                                             D
                             f  ( )        f  ( )
                                                1
                                     e ax  =  f  ( )  e ax
                                             a
                                               f  ( )
                                                D
                                    e ax    1
                                        =      e  ax ,  provided  ( )f a  0.
                                     a
                                    f  ( )  f  ( )
                                             D
          Illustrative Examples
                 Example 1: Solve the following equation
                            (D 2  3D  2)y = e  5x .



                                           LOVELY PROFESSIONAL UNIVERSITY                                   127
   129   130   131   132   133   134   135   136   137   138   139