Page 167 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 167

Differential and Integral Equation




                    Notes
                                          y  (Ly  ) y  (Ly  )  y  (py  )  qy  y  (py  )  qy
                                           1  2   2   1   1   2    2    2   1    1
                                          =  y 1 (py  2 )  y 2 (py  1 )  y 1  py 2  p y  2  y 2  py 1  p y 1

                                                                      p
                                          =  p  (y y  y y  ) p (y y  y y  ) [ (y y  y y  )]
                                               1 2  1 2    1 2  1 2     1 2  1 2
                                   Now recall that the space C[a, b] is a real inner product space with a standard inner product
                                   defined by

                                                                b
                                                          , f g  f ( ) ( )dx
                                                                  x
                                                                    g
                                                                      x
                                                               a
                                   If we now integrate (8) over [a, b] then
                                                 y 1 ,Ly  2  Ly 1 ,y 2  = [ (p y y  y y  )]  b a           ...(9)
                                                                      1 2
                                                                            1 2
                                   This result can be used to motivate the following definitions. The adjoint operator of T, written
                                    , T  satisfies  y 1 ,Ty 2  Ty 1 ,y 2  for all y  and y . For example, let us see if we can construct the
                                                                   1
                                                                        2
                                   adjoint to the operator
                                                                      d 2  d
                                                                      2       ,
                                                                     dx    dx
                                   with  ,     R, on the interval [0, 1], when the functions on which  operates are zero at x = 0 and
                                   x = 1. After integrating by parts and applying these boundary conditions, we find that

                                             1                      1   1            1  1         1
                                     ,         (          )dx              dx               dx        dx
                                     1   2     1  2  2    2      1 2  0  1 2     1 2 0     1 2      1 2
                                             0                         0                0        0
                                           1  1        1         1
                                   =   1 2      1 2 dx    1 2 dx   1 2  (  1  ,  2 ),
                                           0  0        0        0
                                   where

                                                            d     d
                                                         D   2
                                                            dx  2  dx
                                                                                              ,
                                   A linear operator is said to be Hermitian, or self-adjoint. If  y 1  ,Ty 2 = Ty y 2  for all y  and y .
                                                                                             1
                                                                                                        1
                                                                                                              2
                                   It is clear from (9) that L is a Hermitian, or self-adjoint, operator if and only if
                                                                             b
                                                                   ( p y y  y y  0
                                                                          1 2
                                                                     1 2
                                                                             a
                                   and hence
                                                                          a
                                                                                     y
                                                                              a
                                                                            y
                                                                                       a
                                                                      a
                                                                                   a
                                                                        y
                                               b
                                                       b
                                                     y
                                                 y
                                                   b
                                                              y
                                                                b
                                             p ( ){ ( ) ( ) y  1 ( ) ( )} p ( ){ ( ) ( ) y  1 ( ) ( )}  0  ...(10)
                                                            b
                                                                                      2
                                                  1
                                                                         1
                                                               2
                                                                             2
                                                      2
                                   In other words, whether or not L is Hermitian depends only upon the boundary values of the
                                   functions in the space upon which it operates.
                                   There are three different ways in which (10) can occur.
                                   (i)  p(a) = p(b) = 0. Note that this doesn’t violate our definition of p as strictly non-zero on the
                                       open interval (a, b). This is the case of singular boundary conditions.
          160                               LOVELY PROFESSIONAL UNIVERSITY
   162   163   164   165   166   167   168   169   170   171   172