Page 163 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 163

Differential and Integral Equation




                    Notes          8.6 Keywords

                                   Exact Differential: An equation

                                                            Pdx Qdy Rdz  0,                                ...(1)
                                   is an exact differential if its integral is found in the form
                                                                  ( , , )u x y z  , c          (c being a constant)

                                   Exact Differential Equation: When equation (1) is put into the form

                                                                 y
                                                               x
                                                            du ( , , )  Pdx Qdy Rdz  0,
                                                                  z
                                   it is called Exact Differential Equation
                                   Integrable: A differential equation when solved is said to be integrable.
                                   8.7 Review Questions


                                             dx  dy  dz
                                   1.  Solve
                                             x   y   z

                                   2.  Solve  yz log y dx z x log z dy xy dz  0
                                   3.  Solve  (y b )(z c )dx  (x a )(z c )dy  (x a )(y b )dz  0


                                   4.  Solve  yz 2 (x 2  yz )dx zx 2 (y 2  xz )dy xy 2 (z xy )dz  0

                                             dx  dy      dz
                                   5.  Solve            2  2  2
                                             y   x   xyz  (x  y  )

                                   Answers: Self  Assessment

                                         2
                                   3.   x y  cze  2 ,                  (c being a constant)
                                   4.   (a 2  x 2  y  2 1/2  C  , Z    (c being a constant)
                                                 )

                                   5.   xy  2  cz 3  ,                 (c being a constant)

                                   6.   (x z ) 2  ( c y z )            (c being a constant)

                                   7.    ( z x y ) y  2  cz  2         (c being a constant)

                                   8.   x  2  y 2  z  2  cx            (c being a constant)

                                   9.   xy  ( c a z )                  (c being an arbitrary constant)

                                   10.  xy yz zx   ( c x y z ),        (c being a constant)

                                           6t
                                   11.  x  e  (A cos t + B sin t)
                                                                 t
                                        y  e 6t  [(A B )cos t  (A B )sin ]


          156                               LOVELY PROFESSIONAL UNIVERSITY
   158   159   160   161   162   163   164   165   166   167   168