Page 158 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 158

Unit 8: Total Differential Equations, Simultaneous Equations




                                                                                                Notes
                                                  t
          or               (D 2  9D  14)x = 1 5t  3e                               ...(6)
          or               (D  7)(D  2)x = 1 5t  3e t                              ...(7)

          C.F. is            C e  7t  C e  2t
                              1
                                   2
          The particular integral, P.I. is given by
                                                1             t
                                    P.I. =          2  {1 5t  3 }
                                                             e
                                           [14 9D D  ]
                                                        1
                                            1    9D D 2
                                        =     1           1 5t  3e t
                                           14      14
                                            1    9D            3e t
                                        =     1     (1 5 )
                                                        t
                                           14    14        14 9(1) (1) 2
                                            1       45  3e t
                                        =     1 5t
                                           14       14   24

                                            1  31      e t
                                        =          5t                              ...(8)
                                           14  14      8
          So the complete solution is

                                                  5   31   e t
                                     7t
                                              2t
                                  C e   + C e      t                               ...(9)
                                            2
                                   1
                                                 14   196  8
          Self Assessment
                    dx
          11.  Solve    7x y  0
                     dt
                    dy
                        2x  5y  0
                    dt

                    dx   dy           t
          12.  Solve    2    2x  2y  3e
                     dt  dt
                      dx  dy         3t
                     3       2x y  4e
                      dt  dt
          The equation of the type
                        P dx Q dy R dz = 0
                         1
                                    1
                              1
                                                                                   ...(1)
                        P dx Q dy R dz = 0
                         2
                              2
                                    2
                         ,
                     ,
                   ,
          Where   P P Q Q  and  R 1 , R 2  are functions of  , ,x y z
                  1
                           2
                        1
                    2
          We can write these equations as
                           dx    dy
                         P 1   Q 1   R 1 = 0
                           dz    dz
                                           LOVELY PROFESSIONAL UNIVERSITY                                   151
   153   154   155   156   157   158   159   160   161   162   163