Page 161 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 161

Differential and Integral Equation




                    Notes
                                                    1     1
                                   or                         c 2 = 0
                                                   x y  x y
                                                   x y x y    c
                                                    (x 2  y 2 )  2 = 0


                                                   2y c  2 (x  2  y  2 ) = 0

                                                                     2y
                                   So                         c  =   2  2
                                                               2    y  x
                                   So complete solution is

                                                                        x y    zy
                                                             c
                                                           c
                                                          ( , ) = 0         ,  2  2  0                     ...(6)
                                                           1
                                                              2
                                                                          z  y  x
                                          Example 3: Solve
                                                             dx     dy    dz
                                                                 =                                         ...(1)
                                                             xy     y  2  xyz  2x 2
                                   Solution:

                                   From the first two members
                                                             dx     dy
                                                                 =   2
                                                             xy     y

                                                             dx     dy
                                                                 =                                         ...(2)
                                                             x      y
                                   Integrating (2) we have
                                                           log x  = log y  logc 1

                                   or                         x = c y                                      ...(3)
                                                                    1
                                   From the second and third member of (1) we have

                                                             dy       dz
                                                             y  2  =  xyz  2x  2                           ...(4)
                                   Putting the value of x from (3) we have from (4)

                                                             dy  =      dz
                                                                            2 2
                                                             y 2   [zc y 2  2c y  ]
                                                                      1
                                                                           1
                                                                       dz
                                   or                         dy =                                         ...(5)
                                                                   (c z  2c 1 2 )
                                                                     1
                                   Integrating (5) we have

                                                                        dz    c
                                                             dy =              2
                                                                          c
                                                                     c  (z  2 )  c
                                                                     1     1   1

          154                               LOVELY PROFESSIONAL UNIVERSITY
   156   157   158   159   160   161   162   163   164   165   166