Page 160 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 160

Unit 8: Total Differential Equations, Simultaneous Equations




          Therefore                                                                             Notes
                           xdx ydy zdz = 0                                         ...(2)


                            x 2  y 2  z 2
          or              d             = 0
                             2  2   2
          or                  x  2  y  2  z 2  = constant = c                      ...(3)
                                                    1
          Similarly

                     y dx xdy zdz          y dx xdy zdz
               yz (y x ) xz (x y ) z (x 2  y 2 )  =  0
          Thus

                           ydx xdy zdz = 0

                                     z 2
          Thus                   xy     = constant = c                             ...(4)
                                     2              2
          So the two integrals (3), (4) are complete integrals of (1) Q.E.D.


                 Example 2: Solve
                                   dx       dy    dz
                                 x 2  y  2  =  2xy  (x y )z                        ...(1)

          Solution: From the first two members
                               dx dy         dz
                             x 2  y  2  2xy  =  (x y )z

          or
                                 dx dy     dz
                                        =                                          ...(2)
                                  x y       z
          Integrating (2) we have

                               log(x y ) = log z  logc

                                   x y = cz                                        ...(3)
          Also from (i)
                                 dx dy     dx dy
                                 (x y 2  )  =  (x y ) 2                            ...(4)

          Integrating (4) we have

                                (x y )  1  =  (x y )  1  c 2  (c  being a constant)                 ...(5)
                                                            2
                                    1       1
          or                            =       c 2
                                   x y     x y



                                           LOVELY PROFESSIONAL UNIVERSITY                                   153
   155   156   157   158   159   160   161   162   163   164   165