Page 155 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 155

Differential and Integral Equation




                    Notes          The set of Auxiliary equations are
                                                          dx           dy        dz
                                                                 =                                         ...(2)
                                                        Q    R       R   P      P   Q
                                                         z   y        x   z     y   x

                                                             Q            R
                                                                 = 2y x ,    z x  2y
                                                              z           y

                                                              R            P
                                                                 =  2x y ,    2x y
                                                              x            z
                                                              P        Q
                                                                 =   , z   z
                                                              y        x

                                                         Q    R
                                                                 = 2y x x   2y
                                                          z   y

                                                          R   P
                                                                 =  2x  2x                                 ...(3)
                                                          x   z
                                                         P   Q
                                                                 =  z z   0
                                                          y   x

                                   Thus substituting (3) into equation (2) we have
                                                       dx                dy          dz
                                                                 =
                                                  (2y x ) (x  2 )  (y  2 ) (2x y )  z  ( z )
                                                                        x
                                                             y
                                                           dx         dy    dz
                                                                 =                                         ...(4)
                                                                         x
                                                        2(2y x )    2(y  2 )  0
                                   Last equation gives dz = 0

                                   or                          z = a = u  (say)                            ...(5)
                                   From first two members of equation (4) we have

                                                            dx       dy
                                                                 =
                                                          2y x      y  2x
                                                            x
                                   or                  (y  2 )dx = (2y x )dy


                                   Re-arranging we have
                                                       ydx xdy  2xdx  2ydy = 0

                                   or                       ( d xy d (x 2 ) d (y  2 ) = 0

                                                                ( d xy x  2  y  2 ) = 0

                                   Thus                          xy x 2  y 2  = constant = v (say)         ...(6)




          148                               LOVELY PROFESSIONAL UNIVERSITY
   150   151   152   153   154   155   156   157   158   159   160