Page 153 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 153
Differential and Integral Equation
Notes
Example 1: Solve
(y 2 yz z 2 )dx (z 2 zx x 2 )dy (x 2 xy y 2 )dz = 0 ...(1)
Here put P = y 2 yz z 2 , Q z 2 zx x 2
R = x 2 xy y 2 ...(2)
Q R
Now = 2z x , 2y x
z y
R P
= 2x y , 2z y
x z
P Q
= 2y z , 2x z
y x
The auxiliary equations are
dx dy dz
= ...(3)
Q R R P P Q
z y x z y x
dx dy dz
or = ...(4)
2(z y ) 2(x z ) 2(y x )
so
dx dy dz dx dy dz
= ...(5)
z y x z y x 0
Thus dx dy dz = 0
or x y z = constant = u (say) ...(6)
Also from (4)
(z y )dx = (x z )dy (y x )dz
z 2 y 2 x 2 z 2 y 2 x 2
(z y )dx (x z )dy (y x )dz
So ...(7)
0
Gives us
(z y )dx (x z )dy (y x )dz = 0 ...(8)
or ydx xdy zdy ydz zdx xdz = 0
or ( d xy yz zx ) = 0
So xy yz zx = constant = v (say) ...(9)
146 LOVELY PROFESSIONAL UNIVERSITY