Page 153 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 153

Differential and Integral Equation




                    Notes
                                          Example 1: Solve

                                                  (y 2  yz z 2 )dx  (z 2  zx x 2 )dy  (x 2  xy y 2 )dz  = 0  ...(1)

                                   Here put                   P = y 2  yz z 2  , Q  z 2  zx x 2

                                                              R = x  2  xy y  2                            ...(2)

                                                             Q            R
                                   Now                           = 2z x ,     2y x
                                                              z            y

                                                              R            P
                                                                 = 2x y ,     2z y
                                                              x            z
                                                              P           Q
                                                                 = 2y z ,     2x z
                                                              y            x

                                   The auxiliary equations are

                                                           dx         dy      dz
                                                                 =                                         ...(3)
                                                         Q    R      R   P   P   Q
                                                          z   y      x   z   y   x

                                                           dx        dy      dz
                                   or                            =                                         ...(4)
                                                         2(z y )    2(x z )  2(y x )
                                   so

                                                    dx dy dz        dx dy dz
                                                                 =                                         ...(5)
                                                 z y x z y x           0

                                   Thus               dx dy dz = 0
                                   or                    x y z = constant = u     (say)                    ...(6)

                                   Also from (4)

                                                        (z y )dx  =  (x z )dy  (y x )dz
                                                         z 2  y 2   x 2  z 2  y 2  x 2

                                                                   (z y )dx  (x z )dy  (y x )dz
                                   So                                                                      ...(7)
                                                                               0
                                   Gives us

                                                   (z y )dx  (x z )dy  (y x  )dz = 0                       ...(8)

                                   or            ydx xdy zdy ydz zdx xdz = 0

                                   or                           ( d xy yz zx ) = 0
                                   So                            xy yz zx = constant = v (say)             ...(9)





          146                               LOVELY PROFESSIONAL UNIVERSITY
   148   149   150   151   152   153   154   155   156   157   158