Page 149 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 149

Differential and Integral Equation




                    Notes          Now from (4) we have
                                                                      3  3     2z   z
                                                                     x   y  = e  Ce                      ...(8)
                                   which is the required solution


                                          Example 2: Solve
                                                 2         2
                                               (2x   2xy  2xz   1)dx dy dz .2z = 0                      ...(1)
                                                                 
                                                                     
                                   by regarding one variable as constant.
                                   Solution: Let x be constant, so that
                                                                        dx = 0                             ...(2)

                                   Then                           dy  2z dz = 0

                                   or                               ( d y z 2 ) = 0
                                                                      
                                   so                                 y z 2  = constant
                                                                       
                                                                                x
                                                                           =  ( )     (say)               ...(3)
                                   Taking differential of (3) we have

                                                                  dy  2z dz = d ( )                      ...(4)
                                                                                 x
                                   Comparing (4) with (1) we have

                                                                    2
                                                          2
                                                                                 x
                                                       (2x   2xy   2x z   1)dx = d ( )
                                                                        d
                                                                                2
                                                                          = 2x   1 2 (y z 2  )
                                                                                    
                                                                                      x
                                                                                         
                                                                        dx
                                                                        d
                                                                                2
                                   or                                     = 2x   1 2x
                                                                                    
                                                                        dx
                                                                   d            2 1
                                                                                  
                                   So                                  2x =  2x                         ...(5)
                                                                   dx
                                                                     2x dx  x 2
                                   The equation (5) is linear in , so I.F. is  e    e  .
                                                                         2               2
                                                                                        x
                                                                                   2
                                   Thus                                e x  =   (2x   1) e dx C
                                                                                            
                                                                                              2
                                                                                      2
                                                                                              x
                                                                                                 
                                                                           =   x     2xe x     dx    e dx C
                                                                                  2          2
                                                                                       x
                                                                                             x
                                                                           =  x e x    e dx   e dx C
                                                                                                
                                                                                  2
                                                                           =  x e x    C
                                   So    x C e  x  2 .  Thus  y z  2    x C e    x 2   Q.E.D.
                                                              
          142                               LOVELY PROFESSIONAL UNIVERSITY
   144   145   146   147   148   149   150   151   152   153   154