Page 145 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 145

Differential and Integral Equation




                    Notes          Solution:
                                   Let
                                                    P = y  2  yz , Q  z  2  zx ,R  y 2  xy                 ...(2)

                                   The condition for integrability of equation (1) is

                                             Q   R      R   P      P   Q
                                          P          Q          R          = 0                             ...(3)
                                             z   y       x   z      y   x
                                   Now

                                                   Q           R
                                                      = 2z x ,    2y x
                                                   z           y

                                                   R             P
                                                      =    , y      y
                                                   x             z
                                                   P             Q
                                                      = 2y z ,      z
                                                   y             x

                                   Substituting in equation (3) we get
                                                         y
                                          (y  2  yz )(2z  2x  2 ) (z  2  zx )( y y ) (y 2  xy )(2y z z )
                                   or     y 2 (2z  2x  2y  2 ) yz (2z  2x  2 ) 2 (z  2  zx ) 2xy  2
                                                                          y
                                                                      y
                                                        y
                                                                                         2
                                                                        2
                                                   2
                                               = 2y z  2xy 2  2yz 2  2xyz  2y z  2yz 2  2xyz  2xy = 0 = R.H.S.
                                   So condition of integrability is verified.
                                   Let z be constant, so that dz = 0. So from (1) we get
                                                        (y 2  yz )dx  (z  2  zx )dy = 0                    ...(4)

                                                                dx    zdy
                                   So                                      = 0
                                                               x z  y  2  yz

                                                           dx   1    1
                                   or                                   dy = 0                             ...(5)
                                                          x z   y  z y
                                   Integrating we get

                                                                       y
                                                          log(x z ) log    = Constant
                                                                      y z

                                                                   (x z )y
                                   or                          log         = constant                      ...(6)
                                                                    y z
                                                                           = log                          (say)

                                                                     ( y x z )
                                   so                                      =                              ...(7)
                                                                     y z




          138                               LOVELY PROFESSIONAL UNIVERSITY
   140   141   142   143   144   145   146   147   148   149   150