Page 146 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 146

Unit 8: Total Differential Equations, Simultaneous Equations




          Where  is only a function of z. Taking the differential of both the sides, we get    Notes
                                  y
                            (y z ) (dx dz ) (x z )dy  ( y x z )(dy dz )
                                           (y z )  2             = d

          or

                             (y  2  yz )dx dy (z  2  zx ) dz (y  2  zy yx yz )
                                                                 = d              ...(8)
                                            (y z ) 2
          Now from (1) and (8) we have,

                                                d  = 0    or      k  (constant)
          Thus from (7)

                                            ( y x z )
                                                   = k
                                             y z
          or the solution is
                                             ( y x z ) = k (y z )                Q.E.D.



                 Example 2: Solve
                          2
                                             2
                        (x y y 3  y 2  ) z dx  (xy  2  x z x  3  )dy  (xy  2  x 2  ) y dz = 0  ...(1)
                                            2
                                                              2
                                                                            2
          Let                         P = x y y 3  y  2  , z Q  xy  2  x z x  3  , R  xy 2  x y
          The condition of integrability is
                     Q   R      R   P      P   Q
                 P           Q          R          = 0                             ...(2)
                     z   y      x   z      y   x
          So

                                     Q          R
                                        =   x  2 ,  2xy x  2
                                     z          y

                                     R      2      P     2
                                        = y   2xy ,     y
                                     x             z
                                     P      2   2       Q    2       2
                                        = x   3y   2yz ,   y   2xz  3x
                                     y                  x
          Substituting in (2) we have

                   2
                                                  2
               = (x y y  3  y  2  ) z  x  2  2xy x  2  xy  2  x z x  3  (y  2  2xy y  2 )
                   (xy  2  x  2  ) y x 2  3y  2  2yz y  2  2xz  3x  2


                                                          2
                                                               y
               = y  (x y )(x y ) yz  2 (x y  )  ( x y x )(y x ) x z  (2 )(x y  )
                                    x
                   2xy (x y )[2x  2  2y yz xz ]


                                           LOVELY PROFESSIONAL UNIVERSITY                                   139
   141   142   143   144   145   146   147   148   149   150   151