Page 151 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 151

Differential and Integral Equation




                    Notes          Integrating
                                                        logu  log(1 v ) log z = logc            (c being constant)

                                                                       uz
                                   or                                      = c
                                                                      1 v
                                                                          2
                                   or                                  u z = c (z zv )
                                   or                                    xz = c (y z )                     ...(6)

                                   is the solution of the equation (1).


                                          Example 2: Solve
                                                 ( z z y )dx z (z x )dy x (x y )dz = 0                     ...(1)

                                   Here                                  P = z (z y ), Q  ( z z x ), R  ( x x y  )  ...(2)

                                                                         P         Q
                                                                           =    , z   z
                                                                         y         x

                                                                        R            D
                                                                           = 2x y  ,     2z y              ...(3)
                                                                         x            z
                                                                        Q            R
                                                                           = 2z x  ,    x
                                                                        z            y

                                   The integrability condition

                                            dQ   R       R   P      P  Q
                                          P          Q          R          = 0                             ...(4)
                                             dz   y      x   z      y   x
                                   L.H.S. of equation (4) is

                                               = z (z y ) 2z x x  ( z z x )[2x y  2z y ] x (x y )[ z z ]

                                                   2
                                               = 2 (z z y ) z (z x )(2x  2y  2 ) 2zx (x y )
                                                                         z
                                                       2
                                                             2
                                                                                     2
                                               = 2z 3  2z y  2z x  2zx 2  2yz  2  2xyz  2z  3  2z x  2zx  2  2xyz  0  = R.H.S.
                                   So condition (4) is satisfied
                                   Let
                                                              x = uz dx   z du udz
                                                                     ,
                                                                                                           ...(5)
                                                                     ,
                                                              y = vz dy   z dv vdz
                                   Substituting in equation (1)
                                                                               2
                                                                                     )
                                             z 2 (1 v )[zdu udz ] z  (1 u )[zdv vdz ] z u (u v dz  = 0
                                                   )z
                                   or         (1 v du z (1 u )dv  u (1 v ) v (1 u ) u (u v dz  = 0
                                                                                     )




          144                               LOVELY PROFESSIONAL UNIVERSITY
   146   147   148   149   150   151   152   153   154   155   156