Page 220 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 220

Unit 13: Orthogonality of Solutions




                                                 –x
          are orthogonal w.r.t. the weight function p(x) = e  on the interval 0  x              Notes
                                        x
                                    x
                                 L
                                x
                                                  L m ( ). ( ) e dx
                                  n
                            0
                                     d n  n  x
                                  x
                            =  L m ( )  n  (x e  )dx
                                    dx
                              0
                                    d  n  1             d n  1
                                                             n
                                          n
                                  x
                                                     x
                            =  L m ( )  (x e  x )  L  m ( )  (x e  x )dx
                                    dx  n  1           dx n  1
                                              0  0
                                     d  n  1  n  x
                                  x
                            =  L m ( )  n  1  (x e  )dx
                                    dx
                              0
          proceeding similarly
                                         d n m  n  x
                                     m
                                 m
                            = ( 1)  L  ( )   (x e  ) dx n  m
                                       x
                                     m    n m
                                         dx
                                   0
                                                 n
                                       m
                            = ( 1) m  ( 1) m !  d n m  (x e  x ) dx n  m
                                            n m
                                           dx
                                   0
                                  d n m  1  n  x
                            =  m !  n m  1  (x e  )  0
                                  dx
                                              0
          Now,
                                   x
                               x
                                                 L 2 n ( ). e dx
                           0
                                    d n
                                        n
                            =  L n ( )  (x e  x ) dx
                                  x
                                    dx  n
                              0
                                         n
                            = ( 1) n  L n ! n  ( )(x e  x  ) dx
                                      x
                                  0

                                            x
                                 n
                                          n
                                     n
                                                 n
                            = ( 1) ( 1) n ! x e dx  ( !) 2
                                        0
          Thus the functions of the orthogonal system are
                                           e  x  /2 L n ( )
                                                 x
                                     (x) =                                  (n = 0, 1, 2,...)
                                    v          ! n




                                           LOVELY PROFESSIONAL UNIVERSITY                                   213
   215   216   217   218   219   220   221   222   223   224   225