Page 297 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 297

Differential and Integral Equation




                    Notes              where u = 0 is an integral of (1).
                                       Similarly

                                                          z   x 4    u  u
                                                   p  =                     P 2 /P 4
                                                    2     x  2  x 2  x 2  x 4

                                                          z   x 4    u  u
                                                   p  =                     P 3  /P 4
                                                    3     x  3  x 3  x 3  x 4
                                       So equation (1) becomes
                                                            2
                                             F  x  x   P  P    x p p  0                                    ...(2)
                                                 2  3  2   3    4 1 4
                                       So equation (2) involves four variables, but not involving the dependent variable u. Now

                                                   F          F      F
                                                      =  x P  ,  0,       2 x 2  x 3  P 2  P 3
                                                          4 4
                                                  P           x      P
                                                   1           1      2
                                                   F           2   F                   F         2
                                                      =  P   P  ,      2 x  x   P  P  ,    P   P
                                                  x  2    2  3     P 3    2  3   2  3  x 3  2   3
                                                   F          F
                                                  P 4  = x P  ;  x 4  P P  .
                                                          4 1
                                                                   1 4
                                       The subsidiary equations are
                                        dx 1  dP 1      dx 2         dP 2         dx 3
                                        x P   0    2 x  x  P   P         2    2 x  x  (P  P  )
                                         4 4          2  3  2   3   P 2  P 3    2  3  2   3
                                            dP 3   dx 4  dP 4
                                                2
                                          P 2  P 3  x P  P P
                                                          1 4
                                                    4 1
                                       of which integrals are
                                                              F  = P  = a ,  dp  = dp , so P   P  = a  = F
                                                               1    1  1    2   3    2   3  2   2
                                                            dx  4   dP 4
                                                                             4 4
                                                            x P  =   P P  , so x P  a 3  F 3
                                                             4 1     1 4
                                       so
                                                              F  = P  = a                                  ...(3)
                                                               1    1  1
                                                              F  = P   P  = a                             ...(4)
                                                               2    2   3  2
                                                              P  = x P  = a                                ...(5)
                                                               3    4 4  3
                                       We have to ensure that  F r  ,F s  0,  where r and s are any two of the indices 1, 2, 3. To see

                                        F  ,F  0,  we have
                                         1  2
                                           F 1  F 2  F 1  F 2  F 1  F 2  F 1  F 2  F 1  F 2  F 1  F 2
                                           x  1  P 1  P 1  x  x 2  P 2  P 2  x 2  x 3  P 3  P 3  x  3

                                             F  F   F   F
                                             1  2    1   2  0
                                            x 4  P 4  P 4  x  4                                            ...(6)





          290                               LOVELY PROFESSIONAL UNIVERSITY
   292   293   294   295   296   297   298   299   300   301   302