Page 344 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 344

Unit 20: Higher Order Equations with Constant Coefficients and Monge’s Method




          where                                                                                 Notes
                            t
                           f  ( )
                   ( ) =     dt .                                                  ...(6)
                   t
                  1
                           2a
                           F ( )
                             t
          and     2 ( ) =     dt .                                                 ...(7)
                   t
                            2a
          Hence the primitive is
                z   qy =  1 (q ax )  2 (q ax )
                    y =   1  (q ax )  2  (q ax )                     [from (5), (6) and (7)].


                 Example 5: Solve:

                           rq  (p x )s yt y (rt s  2 ) q  = 0

                                  ),
          Solution: Here  R  , q S  (p x T  , y U  , y V  . q
          The equation in   is

                              2                  2
                                        y
                               [qy qy ]  . (p x ) y  = 0
          or                            =   , or   y /(p x ).

               The intermediate integrals are given by

                                     y  2    y
                               y dy     dx     dp = 0                              ...(a)
                                    p x     p x
                                    y
                                      dx q dy y dq = 0


                                              2
                                      qy     y dq
                                 y dx    dy        = 0                            ...(b)
                                      p x    p x
                                    y
                                      dy y dx y dp = 0

          From (a)
                                     y
                              [(p x )/ ] =                                         ...(1)
                                     qy = F( )                                     ...(2)
          or one of the integrals is
                                                   y
                                     qy = F [(p x )/ ].
          From second equation of (b),
                                             p x
                                   p + x =  ,                             [from (1)]...(2 )
                                              y   y

                                      p =      x.                                  ...(3)



                                           LOVELY PROFESSIONAL UNIVERSITY                                   337
   339   340   341   342   343   344   345   346   347   348   349