Page 339 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 339

Differential and Integral Equation




                    Notes                          2
                                   or            m   bm  (ac eh ) = 0                                      ...(3)
                                   If m , m are the roots of (3), the first system of intermediate integrals is given by
                                      1  2
                                             U dy   T dx   U dp = 0,
                                                   1      1
                                             U dx  2 R dy  2 U dq = 0,


                                                e         e
                                   i.e., by edy   c dx       e dp = 0.
                                               m 1       m 1

                                               e         e
                                        edx       ady       e dq  = 0.
                                              m          m
                                                2         2
                                   or by         c dx e dp m dy = 0,
                                                            1
                                                 a dy e dq m dx = 0;
                                                            2
                                   so one of the intermediate integrals is

                                                     cx ep m y =    ( f ay eq m x ).                       ...(4)
                                                                             2
                                                             1
                                   Similarly the second intermediate integral is
                                                    (cx ep m y ) = F (ay ap m x ),                         ...(5)
                                                             1
                                                                             1
                                   It is not possible to get the values of p and q from (4), (5); so we combine (4) with cx ep m y  , A
                                                                                                         2
                                   Thus we have
                                                    (m 2  m 1 )y A =  ( f ay eq m x )
                                                                             2

                                   or                     ay eq = m x    [(m 2  m 1 )y A ]
                                                                     2
                                   where   is inverse function of f.

                                   This gives q, and   cx ep m y  A  gives p.
                                                         2
                                   Substituting these values in  dz  p dx q dy ,
                                                             e dz = (A cx m y )dx  [ ay m x  {(m 2  m  1 )y A  }]dy  .
                                                                                        2
                                                                            2
                                   Integrating,

                                                        cx  2  ay  2
                                                     ez          = m xy Ax   { (m 2  m 1 )y A } B
                                                                     2
                                                         2   2
                                                                      t
                                                                    f  ( )dt
                                                              t
                                   where                     ( ) =  m  m
                                                                     2   3
                                          Example 2: Solve:

                                                                          2
                                   z (1 q 2 )r  2pqzs z (1 p 2 )t z 2 (s 2  rt ) 1 p  2  q = 0.




          332                               LOVELY PROFESSIONAL UNIVERSITY
   334   335   336   337   338   339   340   341   342   343   344