Page 336 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 336

Unit 20: Higher Order Equations with Constant Coefficients and Monge’s Method




                                                                                                Notes
                              dq s dx  dp s dy  4
                                             sec y = 2q tan y
                                dy      dx
                                                              4
                              4
          or         dq dx  sec y dp dy  2 tan y dx dy  = s (dx 2  sec y dy 2 )
                                       q
               Subsidiary equations are
                                            4
                                      dx  2  sec y dy  2  = 0                      ...(1)
                              4
                      dq dx  sin y dp dy  2 tan y dx dy  = 0                       ...(2)
                                       q
          From (1) x = tan y +  .                                                  ...(3)
                                      x =    tan y +  .                            ...(4)

          From (2) and (3)
                                            2
                2
                           4
                                        y
             sec y dq dy  sec y dp dy  2 tan sec y dy  2  = 0
                                    q
                                   2
                                          q
          or                 dq  sec y dp  2 tany dy  = 0
                            2
                                          y
          or             cos y dq dp  2 sin cosy dy = 0
                                      q
                                  2
          or                  q cos y p = C    ( f x  tan )
                                                     y
                                    dx      dy       dz
                                        =     2
                                                         y
                                     1     cos y   ( f x  tan )
                                  2
                            dx  sec y dy       dz
          or                            =
                                                  y
                                 2          ( f x  tan )
                            1               2
                              ( f x  tan )(dx  sec y dy ) =  dz
                                    y
                            2
                                 y
                           ( F x  tan ) 2z = K.
                                                  y
                                 y
          or               ( F x  tan ) 2z =  (x  tan )                        from (4)
               The solution is
                                                   y
                                                              y
                                      z =    (x  tan )  (x  tan ).
                                            1          2
          Self Assessment

          Solve the following differential equations by Monge’s method
                 2
                           2
          17.  2x r  5xys  2y t  2(px qy ) 0
          18.  pt qs  q 3








                                           LOVELY PROFESSIONAL UNIVERSITY                                   329
   331   332   333   334   335   336   337   338   339   340   341