Page 332 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 332

Unit 20: Higher Order Equations with Constant Coefficients and Monge’s Method




                                                                                                Notes
                                            2
                                                3
                                           x   ax
                                                        c
          or                   p bq  (y ax )       =   1 ( )  (y ax )
                                                         1
                                           2    3
                                           x  2  bx 3
                               p aq  (y bx )       =   2 ( )  2 (y bx ).
                                                        c
                                                         2
                                           2    3
          Solving,
                   1  yx  2      2  2 x  2
             p =         (a b ) (a  b  )  a  1 (y ax ) b  2 (y bx ) ,
                  a b  2               6
                   1    x 3
             q =          (a b )  1 (y ax )  2 (y bx )
                  b a   6

          Putting these values in dz = p dx + q dy,

                   yx  2    x  3  a  (y ax )  a  (y bx )  x  3  (y ax )  (y bx )
            dz =       (a b )    1      dx    2             1         2      dy
                    2       6     a b         a b       6     a b      a b

                                      3
                               2
                   (a b )x 3  3x y dx x dy  1                     1
                                                                            )(
               =          dx                  [ ( y ax dy a dx )]   [  2  ( y bx dy b dx )]
                                                      )(
                                                1
                      6            6       a b                   a b
                   (a b )x 3  yx 3
             z =                 1 (y ax )  2  (y bx ).
                     24     6
          Note: This question could be solved by the method of Ist chapter also.
                 Example 4: Solve by Monge’s method

                       q (1 q )r  (p q  2pq )s p (1 p )t = 0.

          Solution: Putting
                                           dp s dy   dq s dx
                                      r =         , t        .
                                             dx         dy

                2 dp sdy                   dq sdx
           (q q  )       (p q  2pq )s p (1 p )     = 0
                   dx                        dy

          or               [(q q 2  )dp dy  (p p  2 )dq dx ]

                                        = s [(q q  2 )dy  2  (q q  2pq )dx dy  (p p 2 )dx  2 ]

               The subsidiary equations are
                                          (q q 2 )dp dy p (1 p )dq dx  = 0         ...(1)


          and                [(q q 2  )dy  2  (p q  2pq )dxdy  (p p  2 )dx  2 ] = 0  ...(2)
          From (2),            q dy + p dx = 0                                     ...(3)






                                           LOVELY PROFESSIONAL UNIVERSITY                                   325
   327   328   329   330   331   332   333   334   335   336   337