Page 335 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 335

Differential and Integral Equation




                    Notes          Integrating,

                                                       f  ( )e  2abx
                                                                 = z k   z  ( )
                                                          2ab
                                                               z =  f 1 (y ax e  2abx  f 2 (y ax )
                                                                          )

                                          Example 7: Solve by Monge’s method

                                                                 2
                                                           r t  cos x p tanx = 0.
                                   Solution: Putting

                                                                    dp s dy   dq s dx
                                                               r =        , t        ,   we get
                                                                      dx        dy
                                                                                       2
                                                        2
                                                dp dy  cos x dx dq q  tanx dx dy  =  ( s dy  2  cos x dx  2 ).
                                        The subsidiary equations are
                                                          2
                                                   dy 2  cos x dx 2  = 0,                                  ...(1)
                                                       2
                                               dp dy  cos x dx pq p  tan x dx dy  = 0.                     ...(2)
                                   From (1), y = sin x +  ,                                                ...(3)
                                                              y =    sin x  .                              ...(4)

                                   From (2) and (3),
                                                             2
                                                   cosx dp  cos x dq p sin x dx  = 0
                                                                  x
                                   or              secx dp dq p tan sec x dx = 0
                                                                         a
                                                                                   x
                                   or                  p  sec x q = c 1  f ( )  ( f y  sin ).
                                                            dx      dy    dz
                                                                 =
                                                           secx      1  (y  sin )
                                                                             x
                                   and hence,
                                                    (dy  cosx dx )
                                                  x
                                            ( f y  sin )         =  dz.
                                                         2
                                                          x
                                                    ( F y  sin ) 2z = c G ( ).
                                                                    2
                                                                           x
                                                          x
                                                    ( F y  sin ) 2z = G (y  sin ).                    [From (4)]
                                          Example 8: Solve the equation by Monge’s method:

                                                             4
                                                       t r  sec y = 2q tan y.
                                   Solution: Putting
                                                                    dp s dy   dq s dx
                                                               r =        , t
                                                                      dx        dy



          328                               LOVELY PROFESSIONAL UNIVERSITY
   330   331   332   333   334   335   336   337   338   339   340