Page 327 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 327

Differential and Integral Equation




                    Notes
                                                           2 z     2 z     2 z    z
                                                                                      3 4
                                          Example 4: Solve:  x  2  2  4xy  4y  3  2  6y  x y  .
                                                           x       x y     y      y
                                                                          x
                                   Solution: As shown in the last example, if  u  log ,  log ,
                                                                                 y
                                                              z     z    z   z
                                                            x    =    , y
                                                              x     u    y

                                                        2 z   z      2 z    2  2 z  z  2 z
                                                     x  2   x    =   2  and   y  2      2
                                                        x  2  x     u         y    y   y

                                                             z
                                   Now                 y   x     =
                                                         t   x          u

                                                             3 z     2 z
                                   or                    yx      =      .
                                                            x y       u

                                   With these substitution the equation takes the form
                                              2         2      2
                                               z  z  4   z  4     4  z  6  z   3u  4
                                              u 2  u   u       2           = e  .e


                                                   2 z   2 z   2 z  z    z
                                   or               2  4     4  2      2   = e 3u  4                       ...(1)
                                                   u    u           u

                                   Denoting    by D and    by D  in (1).
                                            u

                                                                        )
                                                   (D 2  4DD  4D 2  D  2D z = e 2u  4  .
                                                                               2u  4
                                                       [(D  2D  )(D  2D  1)]z = e
                                        The complementary function is

                                                                 =  1 (  2u e u  2 (  2 ).
                                                                                   u
                                                                         2
                                                                                    2
                                                                 =  1 (log x y ) x  2 (log x y )
                                                                      2
                                                                              2
                                                                 =  (x y ) x  (x y )
                                                                           1         3u  4
                                                             P.I. =                 e
                                                                   (D  2D  )(D  2D  1)

                                                                                  3 4
                                                                      1    3u  4  x y
                                                                 =        e
                                                                   ( 5)( 6)       30
                                        The solution is

                                                                                   3 4
                                                                                  x y
                                                                      2
                                                                              2
                                                               z =  (x y ) x  (x y )  .
                                                                                   30
          320                               LOVELY PROFESSIONAL UNIVERSITY
   322   323   324   325   326   327   328   329   330   331   332