Page 325 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 325

Differential and Integral Equation




                    Notes                 u
                                   Put  x  e  , y  e
                                                              z     z  1  z   1 z
                                                                 =       ,
                                                              x     u  x  y   y

                                                                     2
                                                     x    x   z =    z
                                                       x    x       x  2

                                                        2 z   z      2 z
                                   or                x  2  2  x  =   2
                                                        x     x     u
                                                        2 z   z      2 z
                                                      2
                                   and               y   2  y    =
                                                        y     y      2
                                        The equation (1) becomes
                                                        2
                                                         z    z     u  2
                                                            2    = e
                                                         2
                                        The complementary function is
                                                                              u
                                                                 =  1 ( ) e 2  2 ( )
                                                                      u
                                                                        x
                                                                 =  1 (log ) y  2  2  (log )
                                                                                   x
                                                                      x
                                                                              x
                                                                 =   ( ) y  2  ( )
                                                                     1      2
                                                                       1      u  2
                                                             P.I. =          e
                                                                   D  (D  2)
                                                                       1      u  2
                                                                 =           e
                                                                   D  (D  2)

                                                                    e u  2   1        e u  2
                                                                 =                (1)     .
                                                                     2   (D   2 2)      2

                                                                    1  2
                                                                 =   xy  log y
                                                                    2
                                                                                 xy 2
                                                                          2
                                                                      x
                                                                             x
                                                  The solution is z =  1 ( ) y  2 ( )  log y
                                                                                  2
                                   Aliter.  yt q  xy
                                   The equation can be written as

                                                          q  1
                                                              q = x
                                                          y  y
                                   Solving,
                                                             1          1
                                                              dy         dy
                                                          . q e  y  =  xe  y  dy  1 ( )
                                                                                y



          318                               LOVELY PROFESSIONAL UNIVERSITY
   320   321   322   323   324   325   326   327   328   329   330