Page 326 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 326

Unit 20: Higher Order Equations with Constant Coefficients and Monge’s Method




                                                                                                Notes
                                      q     x
                                        =    dy    ( )
                                                   x
                                      y     y     1
                                                      x
                                      q = xy log y  y  1 ( )
                                     z
          or                            = xy log y  y  1 ( )
                                                      x
                                     y
                                                           y 2
                                                        x
                                                                 x
                                      z = x y log ydy  1 ( ).  2 ( )
                                                           2
                                             y 2      y 2  1
                                                                 2
                                                                   x
                                                                        x
                                        = x    log y       dy   y f  ( ) F ( )
                                             2        2   y
                                           xy 2     xy 2
                                                         2
                                                                 x
                                                            x
                                      z =     log y     y f  ( ) F ( )
                                            2        4
          is the required solution.
                                   2 z    z    z    z
                 Example 3: Solve:  x  2  y  2  y  x   0
                                   x  2  y  2  x    x
          Solution: Assume  u  log ,  log . Then
                              x
                                      y
                                      z     z  1
                                        =
                                      x     u  x
                                      z     z
          or                       x    =    ,  so that  x                         ...(1)
                                     x      x          x   x
                                     z        2 z   z   2 z
                              x   x     = x 2     x                           [from (1)]
                                x    x        x  2  x   u 2
          Similarly
                                2 z  z
                             y 2  2  y  =    z  .
                                y    y      y  2

               The given equation reduces to
                                2    2
                                 z   z
                                u 2   2  = 0,
          for which
                                      z =   (u  )   (   ) u

                                                     y
                                                                  x
                                        =   [logx  log ]  [log y  log ]
                                                         y
                                        =   (log xy )  log
                                                         x

                                                    y
                                        =  f  1 (xy )  f  2
                                                    x




                                           LOVELY PROFESSIONAL UNIVERSITY                                   319
   321   322   323   324   325   326   327   328   329   330   331