Page 321 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 321

Differential and Integral Equation




                    Notes          Illustrative Examples

                                                         2 z  2 z   z    z
                                          Example 1: Solve:   2  2  3  3   xy  e x  2y .
                                                         x    y     x   y

                                                              )
                                   Solution: Here,  (D 2  D  2  3D  3D z  xy e  x  2y
                                   or,    (D D  )(D D  3)z  xy  e  x  2y

                                          The complementary function is
                                                                 (x  ) y  e  3x  (y  x ).


                                                        xy              e x  2y
                                      Now P.I. =
                                                 (D D  )(D D   3)  (D D  )(D D  3)

                                                         1                 e x  2y
                                               =                  xy
                                                            D   D     (1 D  )(1 D  3)
                                                  3(D  D ) 1
                                                              3
                                                     1      (D   D )  (D  D ) 2       e x .e  2y
                                               =          1                  ... xy
                                                  3(D  D )     3        9          ( 1)(D  2)

                                                     1       x  y  2    x  2y  1
                                               =          xy           e  .e   .1
                                                  3(D  D )   3  3  9         D

                                                      1         x  y  2    x  2y
                                               =             xy           ye
                                                        D       3  3  9
                                                   3D  1
                                                         D
                                                   1     D   D  2       x  y  2    x  2y
                                               =   3D  1  D  D 2  ...  xy  3  3  9  ye


                                                  1      x  y  2  x 2  x   x  2y
                                               =     xy                  ye
                                                  3D     3  3  9  2  3

                                                    2
                                                   x y  1  x  2  x  2x  x 3  x 2
                                               =                             ye x  2y
                                                   3.2  9  2  9  27  18  18
                                        The solution is
                                                                    2
                                                                   x y  x 2  xy  2x  x  2  x  2y
                                                          3x
                                             z =  (x y ) e   (y  ) x                   ye
                                                                    6    9  9   27  18
                                          Example 2: Solve:  (D D  1)(D D  2)z  e 2x y  . x
                                   Solution: The complementary function is

                                                               e x  (y  ) x  e  2x  (y  ) x





          314                               LOVELY PROFESSIONAL UNIVERSITY
   316   317   318   319   320   321   322   323   324   325   326