Page 317 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 317

Differential and Integral Equation




                    Notes                                           k    k
                                                          x
                                               =   log(k  2 ) 1 1           4 2logx dx
                                                                  k  2x  x
                                                                  k   k
                                               =   log(k  2 ) 6          2log x dx
                                                          x
                                                                k  2x  x
                                                                 2           k                          1
                                                         x
                                                                                                   x
                                               =  log(k  2 ).x      .xdx  6x  log(k  2 ) k  log x  2 log .x  .xdx
                                                                                     x
                                                               k  2x         2                          x
                                                              k  2x k       k
                                               = x log(k  2 )        dx  6x  log(k  2 ) k log x  2 log x  2x
                                                                                    x
                                                         x
                                                                                               x
                                                               k  2x        2
                                                               k              k
                                                         x
                                                                       x
                                                                                      x
                                                                                                x
                                               = x log(k  2 ) x  log(k  2 ) 6x  log(k  2 ) k log x  2 log x  2x
                                                               2              2
                                                           k         k
                                                                                   x
                                               = x log y x  log y  6x  log y k log x  2 log x  2x (putting back y =k + 2x)
                                                           2         2
                                               = x log y x  6x k  logx  2 logx  2x
                                                                      x
                                                                x
                                               = x log y  3x  (y  2 )log x  2 log x
                                                                        x
                                                                x
                                               = x log y  3x y log .
                                   Hence the complete solution is
                                                       x
                                                                 x
                                                                                  x
                                             z =  1 (y  2 )  (y  2 ) x log y  3x y log .
                                                               3
                                                                             3
                                                                          x
                                          Example 3: Solve:  r t  tan x  tany  tan tan y
                                   Solution: The given equation is
                                                                   2
                                    (D  2  D  2 )z  = tan tan (tanx  y  2  x  tan y ).
                                                                   2
                                               = tan tan (secx  y  2  x  sec y )
                                          C.F. =   (y x )  (y x ).
                                                       1                 2     2
                                                                     y
                                                                 x
                                           P.I. =             tan tan (sec x  sec y )
                                                 (D D  )(D D  )
                                                   1                  2     2
                                                           x
                                               =        tan tan(c x ){sec x  sec (c x )}dx       [where c   x = y]
                                                 D D
                                                   1                  2                    2
                                                                                x
                                                           x
                                               =         tan tan(c x )sec x dx  tan tan(c x )sec (c x )dx
                                                 D D
                                                   1    1   2          1    2   2
                                               =         tan x  tan(c x )  tan x  sec (c x )dx
                                                 D D    2              2
                                                                             1       2      1    2       2
                                                                              tan tan (c x )   tan (c x  )sec xdx
                                                                                 x
                                                                             2              2



          310                               LOVELY PROFESSIONAL UNIVERSITY
   312   313   314   315   316   317   318   319   320   321   322