Page 314 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 314

Unit 20: Higher Order Equations with Constant Coefficients and Monge’s Method




          So the complete solution is                                                           Notes

                                                              x 2
                                      z = F  (y ax ) x F  (y ax )  ( f y ax )
                                            1         2
                                                               2
                 Example 2: Solve

                       (4D 2  4DD  D  2 )z  = e  x  2y  x 3

          Solution: The auxiliary equation is

                             4m 2  4m  1 = 0
                                      m = 1/2, 1/2

                                    C.F. = F 1 (2y x ) x F 1 (2y x )

                                               1     x  2y  3
                                    P.I. =        2  e   x
                                           (2D D  )

                                               1            1
                                        =          e x  2y       x  3
                                           (2D D  ) 2    (2D D  ) 2

                                           x 2  x  2y  1  D   2  3
                                        =     e         1      x
                                           2.4     4D 2   2D

                                           x 2  x  2y  1  D
                                        =    e       2  1    ... x  3
                                            8      4D     D

                                           x 2  x  2y  1 x 5  x  x  2y  x 5
          So                        P.I. =   e      .      e
                                            8      4 4.5  8      80
          Thus the solution is

                                                              x 2  x  2y  x  5
                                      z = F 1 (2y x ) x F 1 (2y x )  e
                                                               8      80
          Self Assessment

          9.   Solve

               (D D  ) 2  x  (x y )
          10.  Solve
                      2
               (D 3  4D D  4DD  2 )z  cos(y  2 )
                                          x
          20.5 General Method for Finding Particular Integral (P.I.)

          Consider the equation

                              (D mD  )z =  f ( , )
                                             x
                                              y


                                           LOVELY PROFESSIONAL UNIVERSITY                                   307
   309   310   311   312   313   314   315   316   317   318   319