Page 309 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 309

Differential and Integral Equation




                    Notes                                           1         4
                                                                 =   2  x  2  xy  ( ) 0
                                                                                x
                                                                   D          D
                                                                        3
                                                                    x 4  x y  4
                                                                               x
                                                                 =           3  ( )
                                                                   12   6   D
                                                                        3
                                                                                    3
                                                                    x  4  x y  x 4  x 4  x y
                                                                 =
                                                                   12   6   24  8    6
                                   Thus the complete solution is
                                                                                            3
                                                                                       x 4  x y
                                                                         x
                                                                                    x
                                                               z = F 1 (y  2 ) x F 2 (y  2 )
                                                                                       8    6
                                          Example 2: Solve

                                                          2
                                                     (D 2  a D  2 )z = x  2
                                   Solution: The complementary function is given by the equation

                                                          2
                                                    (D  2  a D  )z = 0
                                   The auxiliary equation is

                                                          m 2  a 2  = 0
                                   with roots                 m = a and m =   a.

                                   So                       C.F. = F 1 (y ax ) F 2 (y ax )
                                   The particular integral is given by

                                                                        1      2
                                                             P.I. =          (x  )
                                                                         2
                                                                   (D  2  a D  2 )
                                                                          2
                                                                    1     a D  2  1  2
                                                                 =   2  1   2    (x  )
                                                                   D       D
                                                                          2
                                                                    1     a D  2      1      x 4
                                                                 =     1        ... x 2  (x 2 )
                                                                   D  2    D          D 2    12
                                   So the complete solution is

                                                                                     x 4
                                                               z = F 1 (y ax ) F 2 (y ax )  .
                                                                                     12
                                   Self Assessment


                                              2    2     2
                                               z    z     z
                                   5.  Solve   2       6  2  xy
                                              x   x y    y
                                              2     2     2
                                               z     z     z
                                   6.  Solve   2  3     2  2  x y
                                              x    x y    y


          302                               LOVELY PROFESSIONAL UNIVERSITY
   304   305   306   307   308   309   310   311   312   313   314