Page 311 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 311

Differential and Integral Equation




                    Notes                         2          2
                                   So           (D   2DD   D  )z = sin(2x  3 )
                                                                           y
                                   The auxiliary equation is

                                                      m 2  2m  1 = 0
                                   having roots m = 1, 1, so that
                                                            C.F. = F 1 (y x ) x F 2 (y x )


                                                                       1
                                                                                  y
                                   and                       P.I. =       2  sin(2x  3 )
                                                                   (D D  )
                                   Putting  2x  3y  , u  so we have

                                                                      1
                                                             P.I. =         sin u du du        (integrating twice)
                                                                                  ,
                                                                   (2 3) 2
                                                                 = 1 ( cos )u du


                                                                                   y
                                                                 =   sin u  sin(2x  3 )
                                   Thus the solution is

                                                               z = C.F. + P.I.
                                                                 = F  (y x ) xF  (y x ) sin(2x  3 )
                                                                                             y
                                                                    1        2
                                          Example 2: Solve

                                                      (D 2  D  2 )z  = 30(2x y )

                                   The auxiliary equation is

                                                          m 2  1 = 0
                                   so,                        m = +1,   1
                                   and                      C.F. = F 1 (y x ) F 2 (y x )


                                                                       1
                                                             P.I. =         30(2x y )
                                                                   (D  2  D  2 )
                                   Let  u  2x y ,

                                                                     1
                                                             P.I. =     (30) (u du )du
                                                                   (4 1)

                                                                    1    u  2
                                                                 =   (30)  du
                                                                    3     2

                                                                      u 3  5     3
                                                                 = 10      (2x y )
                                                                      6   6



          304                               LOVELY PROFESSIONAL UNIVERSITY
   306   307   308   309   310   311   312   313   314   315   316