Page 307 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 307

Differential and Integral Equation




                    Notes          Hence the solution is
                                             (z x F (y mx y mx ) = 0
                                                        ),
                                   or                          z   x  ( F y mx ) F 1 (y mx )

                                   so                          z = xF (y mx ) F 1 (y mx )                 ...(10)

                                   In general, the solution of
                                                             r
                                                      (D mD  ) z = 0
                                   is                          z = F 1 (y mx ) xF 2 (y mx ) ... x  r  1 F r (y mx )  ...(11)



                                          Example 1: Solve
                                          4     4       4    4
                                          z  2   z  2   z     z
                                                3
                                         x 4   x y     x y 3  y 2  = 0
                                   The auxiliary equation is
                                                 m 4  2m 3  2m  1 = 0

                                                        m
                                                m 4  1 2 (m 2  1) = 0
                                                       m
                                         (m 2  1)(m 2  1) 2 (m 2  1)  = 0
                                                   (m 2  1)(m  1) 2  = 0 (m  1)(m  1) 3

                                   So the roots are 1, 1, 1,  1
                                   Hence the solution is
                                                                                     2
                                                               z = F  (y x ) xF  (y x ) x F  (y x ) F  (y x )
                                                                    1        2         3       4
                                          Example 2: Solve

                                           (25D 2  40DD  16D  )z  = 0
                                   The auxiliary equation is

                                                   25m 2  40m  16 = 0
                                                        (5m  4) 2  = 0

                                                  4
                                   The roots are  m  , 4 5  are repeated roots so the solution is
                                                  5
                                                                          x
                                                               z = F 1 (5y  4 ) x F 2 (5y  4 )
                                                                                      x
                                   Self Assessment

                                   3.  Solve
                                         3      3      3
                                          z  4  z   4   z   0
                                               2
                                         x 3  x y     x y 2



          300                               LOVELY PROFESSIONAL UNIVERSITY
   302   303   304   305   306   307   308   309   310   311   312