Page 316 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 316

Unit 20: Higher Order Equations with Constant Coefficients and Monge’s Method




                                                                                                Notes
                                              1
                                                       x
                                                               x
                                                                         x
                                        =         [(y  3 )sinx  3 sinx  3cos ]
                                           (D  2D  )
                                                                  [putting back  c  3x y ]
                                              1
                                                             x
                                                   y
                                        =         [ sinx  3cos ]
                                           (D  2D  )
                                                            x
                                                 x
                                        =   {(k  2 )sinx  3cos }dx         [  2x k  ] y
                                                              x
                                        =   k cosx  2( x cos x  sin ) 3sin x
                                                                            
                                                x
                                                                                    x
                                                        x
                                        =   (y  2 )cosx  2 cos x  sin x     [ y  k  2 ]
                                                     x
                                        =   y cosx  sin .
          Hence the complete solution is
                                      z = C . . P . .  1 (y  2 )  2 (y  3 ) y cos x  sin .
                                                                                x
                                                          x
                                                 I
                                                                    x
                                            F
                                           4x  y
                                 2
                                       2
                 Example 2: Solve: (D  4D  )z  2  2
                                           y   x
                                x
                                          x
          Solution: The C.F. =   1 (y  2 )  (y  2 )
                                1        4x  y
          Now,    P.I. =
                         (D  2D  )(D  2D  ) y  2  x  2
                            1       4x    c  2x
                                                                            
                      =                2    2  dx                           ( c  2x  ) y
                                     x
                         D  2D   (c  2 )   x
                            1        2x c c    c  2
                      =           2        2    2    dx
                                         x
                         D  2D       (c  2 )   x  x
                            1       1      2c     c  2
                      =                       2   2    dx
                         D  2D     c  2x  (c  2 )  x  x
                                             x
                            1               c   c
                                       x
                      =         log(c  2 )         2log x
                         D  2D            c  2x  x
                            1         y  2x  y  2x
                      =         log y             2log x               [putting c = y + 2x]
                         D  2D         y      x

                                     k  4x  k  4x
                                  x
                      =    log(k  2 )             2log x dx              where y = k + 2x
                                     k  2x   x
                                       2x k k   k
                      =    log(k  2 ) 1            4 2log x dx
                                  x
                                         k  2x  x



                                           LOVELY PROFESSIONAL UNIVERSITY                                   309
   311   312   313   314   315   316   317   318   319   320   321