Page 318 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 318

Unit 20: Higher Order Equations with Constant Coefficients and Monge’s Method




                                                                                                Notes
                            1       2                2           2     2
                                                  x
                      =          tan x tan(c x ) tan tan (c x )  {sec x  sec (c x )}dx
                         2(D D  )
                            1       2                2
                                                  x
                      =          tan x tan(c x ) tan tan (c x ) tanx  tan(c x )
                         2(D D  )
                            1       2             2
                                              x
                      =          tan x tan y  tan tan y  tanx  tan y  [By putting back y = c   x]
                         2(D D  )
                            1          2         2
                                    y
                                              x
                      =  2(D D  ) [tan sec x  tan sec y ]
                         1            2         2
                      =    [tan(k x )sec x  tan sec (k x )]dx             where k + x = y
                                            x
                         2
                         1   d
                                  x
                      =        {tan tan(k x )} dx
                         2  dx
                         1              1
                             x
                                            x
                      =   tan tan(k x )  tan tan y                      [putting k + x = y]
                         2              2
          Hence the complete solution is
                                          1
                                              x
                    z =   (y x )  2  y x   tan tan y
                                          2
                 Example 4: Find the particular integral with the help of general method for

                                     (D 2  2DD  15D  2  )z  12xy

          Solution: We have
                                1
                  P.I. =                 12xy
                         (D 2  2DD  15D  2 )

                                1
                      =                12xy
                         (D  3D  )(D  5D  )

                            12
                                      x
                      =           ( x c  5 )dx ,                         where y = c   5x
                         (D  3D  )
                           12   cx 2  5x 3
                      =
                         D  3D   2   3

                           2      2     3
                      =        (3cx  10x  )
                         D  3D
                           2    2
                                           x
                      =        x  (3y  15x  10 ),                  (putting back c = y + 5x)
                         D  3D





                                           LOVELY PROFESSIONAL UNIVERSITY                                   311
   313   314   315   316   317   318   319   320   321   322   323