Page 322 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 322

Unit 20: Higher Order Equations with Constant Coefficients and Monge’s Method




                                                                                                Notes
                                 1           x y
                  P.I. =                   [e     ] x
                         (D D   1)(D D   2)
                                 1          2x y         1
                      =                    e                       x
                         (D D   1)(D D   2)      (D D   1)(D D   2)

                        1         2x y
          Now,                    e
                (D D   1)(D D   2)
                                       1            y
                          2x
                      = e                          e
                           (D  2 D   1)(D  2 D   2)
                                   1        y
                          2x
                      =  e                 e
                           (D D    1)(D D  )
                                   1          y
                          2x
                      =  e                  e
                           [0 ( 1) 1][0 ( 1)]
                          2 1  y  1  2x y
                          x
                      = e  . e     e
                            2    2
                        1
          Also,                  x
               (D D    1)(D D  2)
                                                  1
                         1               1
                      =   [1 (D D  )]  1  1  (D D  )  x
                         2               2
                         1                1
                      =   [1 D D    ...] 1  (D D  ) ... x
                         2                2

                         1    3   3
                      =    1   D    D x
                         2    2   2

                         1    3  3     1    3
                      =    x        0    x
                         2    2  2     2    4
               The solution is

                                              1  2x y  1  3
                                   2x
                          x
                    z = e   (y  ) x  e  2 (y  ) x  e  x   .
                                             2      2    4
                                 2 z  2 z  z   z
                 Example 3: Solve:   2  2    3    2z  e x y  x 2  . y
                                 x   y    x    y
                                                           2
          Solution: [(D D  )(D D  ) 2(D D  ) (D D  ) 2]z  e  x y  x y
                                             2
          or      [(D D  2)(D D   1)]z  e  x y  x y
                 The complementary function is
                    z = e  2x  (y  ) x  e x  (y  ) x




                                           LOVELY PROFESSIONAL UNIVERSITY                                   315
   317   318   319   320   321   322   323   324   325   326   327