Page 78 - DMTH504_DIFFERENTIAL_AND_INTEGRAL_EQUATION
P. 78

Unit 3: Hermite Polynomials




          Solution: We have                                                                     Notes

                                t n         t 2  2tx
                                  H  n ( ) = e                                     ...(i)
                                     x
                                 ! n
                              n  0
                           t n  d m  H  ( )  =  d m  e  t 2  2tx
                                    x
                            ! n dx m  n    dx m
                        n  0
                                        = (2 )t  m e  t  2  2tx


                                                 t  n
                                                      x
                                        = (2 )t  m  H n ( )                   (from (i))
                                                  ! n
                                               n  0
                                                1
                                                       x
                                        = 2  m   t  n m H n ( )
                                                 ! n
                                             n  0
          Putting  n m r n r m , for n  0;
                        ,
          r  m , for n  , r  ,

                             t n  d m  H  ( ) = 2 m  1  t H  ( )                  ...(ii)
                                                      r
                                     x
                                                            x
                              ! n dx m  n      (r m )!   r m
                          n  0               r m
          Equating the coefficient of  t  from the two sides, we have
                                 n
                           1 d n  H  ( )    m   1
                                    x
                                                        x
                            ! n dx m  n  = 2  (n m )! H  n m ( )
                                             m
                              d  n          2 n !
                                    x
                                 H  n ( )  =     H   ( )  Q.E.D.
                                                      x
                             dx m          (n m )!  n m
                                              (2 )!
                                                n
                                             n
                 Example 4: Prove that  H  (0) ( 1) .  and (ii) H  (0) 0
                                    2n                    2n  1
                                                 ! n
          Solution: We have
                                t n         t  2  2tx
                                  H n ( ) = e
                                     x
                                 ! n
                             n  0
          Putting x = 0
                                t n         t 2
                                  H  n (0) = e
                                 ! n
                              n  0
                                                              t
                                                 ( ) 2        ( ) n
                                                  t
                                        =   1 t  2     ... ( 1) n  ...             ...(1)
                                                  2!            ! n






                                           LOVELY PROFESSIONAL UNIVERSITY                                   71
   73   74   75   76   77   78   79   80   81   82   83