Page 25 - DMTH505_MEASURE_THEOREY_AND_FUNCTIONAL_ANALYSIS
P. 25

Measure Theory and Functional Analysis




                    Notes
                                          f x    f x   g x    g x
                                             r 1   r      r 1    r
                                          f x    f x   g x    g x   .
                                             r 1   r      r 1    r
                                          n 1            n 1            n 1
                                            h x    h x      h x   h x      g x   g x  .
                                               r 1    r       r 1    r       r 1    r
                                          r 0            r 0            r 0
                                           b    b    b
                                       or V h   V f  V g .
                                           a    a    a
                                       Now by hypothesis, f, g are functions of bounded variations.

                                                  b      b
                                                 V f andV g are finite.
                                                  a      a
                                                  b
                                                 V h   a finite quantity.
                                                  a
                                       Hence h = f + g is of bounded variation in [a,b].
                                   (ii)  Let h = f – g. Then as above,


                                        h x  r 1  h x  r  f x  r 1  f x  r  g x  r 1  g x r  .

                                                  b    b    b
                                                 V h   V f  V g
                                                  a    a     a
                                                  b
                                                 V h   a finite quantity.
                                                  a
                                       Hence h = f – g is of bounded variation in [a,b].

                                   (iii)  Let h(x) = f(x).g(x). Then
                                        h x    h x   f x  .g x   f x .g x
                                           r 1    r     r 1  r 1    r   r
                                         f x  .g x   f x g x    f x g x    f x g x
                                            r 1   r 1   r   r 1   r    r 1   r   r

                                         g x r 1  f x r 1  f x r  f x r  g x r 1  g x r  .


                                         g x   f x    f x   f x . g x  g x  .
                                            r 1   r 1   r     r    r 1    r
                                       Let A =  sup f x : x [a,b] ,


                                              B = sup g x : x [a,b] ,


                                          h x    h x   B. f x   f x  A. g x   g x .
                                             r 1    r       r 1   r       r 1    r
                                          n 1              n 1              n 1
                                            h x r 1  h x r  B.  h x  r 1  h x r  A  g x r 1  g x r  .
                                          r 0              r 0              r 0







          18                                LOVELY PROFESSIONAL UNIVERSITY
   20   21   22   23   24   25   26   27   28   29   30