Page 150 - DCOM203_DMGT204_QUANTITATIVE_TECHNIQUES_I
P. 150

Unit 7: Measures of Dispersion




                 From the above table                                                           Notes
                      510             2  356
                  X      = 51 kgs and        =35.6 kgs 2
                      10                 10
                           = 5.97 kgs
          2.   Ungrouped or Grouped Frequency Distributions: Let the observations X , X  ...... X  appear
                                                                        1  2    n
               with respective frequencies f , f  ...... f , where   f  N.  As before, if the distribution is
                                      1  2   n          i
                                                                                 th
               grouped, then X , X  ......  X  will denote the mid-values of the first, second .....  n  class
                            1  2     n
               intervals respectively. The formulae for the calculation of variance and standard deviation
               can be written as
                        2  1  n         2         1  n         2
                               f X   X                f X   X
                                i  i     and           i  i      respectively.
                           N i  1                 N i  1
               Here also, we can show that
                 Variance = Mean of squares – Square of the mean
          Therefore, we can write

                                f X 2        2              2          2
                           2    i  i     f X i   and      f X i    f X i  .
                                                          i
                                                                   i
                                         i
                                N       N                 N       N
                 Example: Calculate standard deviation of the following data :

                  X : 10 11 12 13 14 15 16 17 18
                  f  :  2   7  10 12 15 11 10     6   3

          Solution.
                                   Calculation  of Standard  Deviation
          Let  u  X X



                                 10   2     20 –4 16    32    200
                                 11   7     77 –3  9    63    847
                                 12   10   120 –2  4    40   1440
                                 13   12   156 –1  1    12   2028
                                 14   15   210 0   0     0   2940
                                 15   11   165 1   1    11   2475
                                 16   10   160 2   4    40   2560
                                 17   6    102 3   9    54   1734
                                 18   3     54 4   16   48    972
                                      76 1064          300 15196
                           1064       2  300
                                                                      .
                                  14,          3 95 and  . .    3 95  199
                                                .
                                                                 .
                            76            76









                                           LOVELY PROFESSIONAL UNIVERSITY                                   145
   145   146   147   148   149   150   151   152   153   154   155