Page 177 - DCOM203_DMGT204_QUANTITATIVE_TECHNIQUES_I
P. 177

Quantitative Techniques – I




                    Notes
                                                                         X i   Y i
                                                               X Y  n
                                                                i i
                                                 r XY                   n     n
                                                                      2               2
                                                                   X i              Y i
                                                          X i 2  n         Y i 2  n
                                                                  n                n
                                                                       X     Y
                                                                        i    i
                                                              X Y
                                                               i i
                                                                        n
                                                                    2              2
                                                                  X              Y                 .... (5)
                                                            2      i       2      i
                                                          X  i           Y i
                                                                 n              n
                                   On multiplication of numerator and denominator by n, we can write
                                                            n  X Y      X     Y
                                                                 i i     i     i
                                                 r
                                                  XY                 2              2              .... (6)
                                                       n   X i 2   X i  n  Y i 2   Y i
                                   Further, if we assume x = X - X  and y =Y - Y , equation (2), given above, can be written as
                                                      i   i         i  i
                                                          1
                                                              x y
                                                               i i
                                                 r XY     n
                                                       1    2 1     2                              .... (7)
                                                            x i    y i
                                                       n       n
                                                            x y
                                                            i i
                                             or  r XY
                                                          2      2                                 .... (8)
                                                          x i   y i
                                                         x y
                                                     1    i i
                                                 or r XY                                           .... (9)
                                                     n  x y
                                   Equations (5) or (6) are often used for the calculation of correlation from raw data, while the use
                                   of the remaining equations depends upon the forms in which the data are available. For example,
                                   if standard deviations of X and Y are given, equation (9) may be appropriate.

                                          Example:  Calculate  the Karl  Pearson's coefficient of correlation  from the following
                                   pairs of values:
                                                                 Values of X :  12   9   8   10   11   13   7
                                                                 Values of Y :  14   8   6     9   11   12   3
                                   Solution:
                                   The formula for Karl Pearson's coefficient of correlation is

                                                                 n   X Y     X i   Y i
                                                                      i i
                                                       r XY
                                                                  2        2      2       2
                                                             n   X i    X i  n  Y i     Y i









          172                               LOVELY PROFESSIONAL UNIVERSITY
   172   173   174   175   176   177   178   179   180   181   182